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In this perspective paper, we explore the use of haptic feedback to enhance 
human-human interaction during musical tasks. We start by providing an overview 
of the theoretical foundation that underpins our approach, which is rooted in the 
embodied music cognition framework, and by briefly presenting the concepts 
of action-perception loop, sensorimotor coupling and entrainment. Thereafter, 
we  focus on the role of haptic information in music playing and we  discuss 
the use of wearable technologies, namely lightweight exoskeletons, for the 
exchange of haptic information between humans. We present two experimental 
scenarios in which the effectiveness of this technology for enhancing musical 
interaction and learning might be  validated. Finally, we  briefly discuss some 
of the theoretical and pedagogical implications of the use of technologies for 
haptic communication in musical contexts, while also addressing the potential 
barriers to the widespread adoption of exoskeletons in such contexts.
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1 Introduction

One of the primary motivations for human collaborative interaction is the pursuit of 
reaching goals that typically go beyond the scope of individual capabilities (Jarrassé et al., 2012; 
Sebanz and Knoblich, 2021). Such forms of collaboration commonly rely on the exchange of 
verbal and sensory information among the interacting humans. For instance, a table, too heavy 
for one person, can be moved collaboratively by two individuals. Effective collaboration can 
reduce cost, time and overall effort required for the task.

In this paper, we consider the question of how collaborative interactions might be enhanced 
through the use of technology with the twofold aim of increasing effectiveness and reducing 
the effort required from humans. We believe that playing music is a suitable context in which 
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to test this hypothesis, for at least two reasons. First, because playing 
music is paradigmatic for human-human collaboration and 
sensorimotor interaction (D’Ausilio et  al., 2012, 2015; Nijs, 2019). 
Second, because providing a measurable definition of the augmented 
level of collaboration in the domain of music is seemingly facilitated by 
the fact that several quantifiable sensorimotor parameters are at stake 
in music interaction (Biasutti et al., 2013; Volpe et al., 2016; Campo 
et al., 2023). For example, a stable musical rhythm and tempo require 
each musician in an ensemble to coordinate their actions in response 
to the rhythms played by other musicians. The co-regulation of the 
ensemble can be measured by onset extraction and subsequent analysis 
of timing intervals (for example, by using trackers of periods based on 
Kalman filtering, Leman, 2021).

Over the last decades, musical interactions have been conceptualized 
within the broad theoretical framework of embodied cognition, 
according to which human action and body movement play a central 
role in the experience of music, among others sensorimotor activities 
(Leman, 2007; Biasutti et al., 2013). The question we want to address 
here deals with the possibility of technologies to enhance these 
embodied interactions. We envision the possibility that enhancing the 
exchange of information among users by providing an additional 
channel of information based on haptic feedback might help boost the 
collaborative dimension of human-human interaction. The challenge is 
whether these technologies can enhance collaborative interactions and 
how to empirically demonstrate their positive effects, if any.

To address these questions, we first outline the theoretical foundation 
on which our explorations are based, namely the embodied music 
cognition framework, focusing especially on the concepts of action-
perception loop and entrainment (Section 2). Thereafter, we examine the 
nature of haptic information (Section 3) and the role of haptic 
exoskeletons to communicate such information (Section 4). We present 
two experimental scenarios that could demonstrate the effectiveness of 
the technology for enhancing musical interaction (Section 5). Finally, 
we discuss the theoretical and pedagogical implications of this perspective 
technology as well as its limitations (Section 6).

2 Action-perception cycles and 
entrainment

Using technology to add sensory feedback providing information 
on other musicians could be seen as a natural extension of the human 
action-perception cycle, in which external auditory feedback generates 
a motor output, which in turn produces auditory feedback and another 
motor response (Kaspar et al., 2014; Leman and Maes, 2014; Pinardi 
et al., 2023). The technological augmentation of the sensory feedback 
with the addition of haptic information would influence action-
perception cycles via entrainment, which can be  conceived of as a 
dynamic adaptation of the actions of a subject influenced by the actions 
of another subject (Kaspar et al., 2014; König et al., 2016; Pinardi et al., 
2023). Both action-perception loops and entrainment are fundamental 
concepts that underpin the theoretical foundation for technology-
mediated collaborative feedback (Kaspar et al., 2014).

Music performance is an excellent domain for exploring this kind 
of feedback as it involves a tight coupling of perception and action. The 
idea that music taps into a shared action repertoire for both the 
encoding (playing) and decoding (listening, dancing) of music has been 
central to the embodied music cognition framework (Leman, 2007; 

Barsalou, 2008; Godøy and Leman, 2010; Leman and Maes, 2014; 
Schiavio, 2014). It connects with recent trends in cognitive science for 
understanding human action and experience (Prinz, 1997; Sheets-
Johnstone, 1999; Thelen, 2000; Gibbs, 2006; Shapiro, 2011; Witt, 2011). 
The conceptual framework generated a solid body of empirical research 
that provided evidence for the role of human motor system and body 
movements in music perception, showing that how we move affects how 
we interpret and perceive rhythm, and what we hear depends on how 
we move and vice-versa (Phillips-Silver and Trainor, 2005, 2007; Maes 
and Leman, 2013; Manning and Schutz, 2013; Maes et al., 2014a). For 
instance, Maes et al. (2014b) showed that music-driven gestures could 
facilitate music perception and Moura et al. (2023) recently showed that 
the tonal complexity of music tightly couples to knee bending 
movements of saxophone players performing the music.

In embodied music cognition, sensorimotor coupling is seen as a 
lower-level form of action-perception coupling. Sensorimotor 
coupling covers multiple proprioceptive and exteroceptive cycles at 
work during playing, including haptic feedback (Leman, 2007). 
Consider a violinist who receives proprioceptive feedback from their 
own musculoskeletal system holding the violin, as well as acoustic 
feedback from the sound produced through air and bone conduction. 
At higher-level, one could mention gestures, body movement and 
actions, connected to perceived structures, for example. In this 
embodied perspective, the collaborative interaction with co-regulated 
actions in view of shared musical goal is one of the most characterizing 
aspects of any ensemble, from duet, to trio, to big orchestra (Biasutti 
et al., 2013; Glowinski et al., 2013; Badino et al., 2014). The action-
perception cycle can be seen as the ability in each subject to react 
coherently to changes that occur in the ensemble (Biasutti et al., 2013). 
Last but not least, action-perception cycles exist also between the 
players and the listeners, with feedback coming through multiple 
sensory channels, such as the visual channel (facial expressions, gaze, 
gestures and movements), the acoustic channel (e.g., singing, hand 
clapping), the olfactory channel (e.g., different smells).

The action-perception cycle can thus be seen as the engine 
driving co-regulated actions at group level. Entrainment has been 
suggested to be  a useful concept (Clayton, 2012; Keller et  al., 
2014; MacRitchie et al., 2017; Clayton et al., 2020) to capture the 
dynamic change in musical actions. Clayton (2012) distinguished 
between three different levels of the entrainment, namely intra-
individual, inter-individual, and inter-group entrainment. Intra-
individual entrainment refers to processes that occur within a 
particular human being, such as the entrainment of networks of 
neuronal oscillators or the coordination between individual body 
parts (e.g., the limbs of a drummer). Inter-individual (or intra-
group) entrainment concerns the co-ordination between the 
actions of individuals in a group, as might occur chamber or jazz 
ensembles. Finally, inter-group entrainment concerns the 
coordination between different groups.

Notably, the interaction and synchronization between individuals 
in Western group ensembles primarily occurs through visual and 
auditory channels (Goodman, 2002; Biasutti et al., 2013). This is because 
the nature of the task, where musicians play individual instruments, 
prevents the exchange of information between players via physical 
touch. What is at stake in this paper, however, is the emergence of novel 
technologies that could facilitate the haptic communication among 
musicians, thereby fostering a more profound sensorimotor interaction 
between them.

https://doi.org/10.3389/fpsyg.2024.1327992
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Michałko et al. 10.3389/fpsyg.2024.1327992

Frontiers in Psychology 03 frontiersin.org

3 Haptic feedback

Having defined the basic concepts for collaborative interaction, it is 
of interest to consider how haptic feedback affects music playing. In 
general, haptics refers to the study of how humans perceive and 
manipulate touch, specifically through kinesthetic (force/position) and 
cutaneous (tactile) receptors (Hannaford and Okamura, 2016). Research 
has demonstrated the significance of touch and haptic information in 
facilitating human interaction, such as dancers synchronizing their 
movements through touch (Sofianidis and Hatzitaki, 2015; Chauvigné 
et al., 2018) or children learning to walk with parental assistance (Berger 
et al., 2014). Moreover, haptic feedback might be used to provide visuo-
spatial information to people with visual impairments or blindness 
(Sorgini et al., 2018, for a review). For instance, a recent work by Marichal 
et al. (2023) a system for training basic mathematical skills of children 
with visual impairments based on the combination of additional haptic 
and auditory information.

In music learning, haptic information serves as a powerful tool, 
enabling learners to adjust their movements and develop new musical 
actions (Abrahamson et al., 2016). Teachers use touch to physically guide 
learners’ movement, to direct their attention to their bodies and to receive 
haptic information about students’ bodies, such as tension, which helps 
them guide, assess, and adapt their touch to the learners’ needs (Zorzal 
and Lorenzo, 2019; Bremmer and Nijs, 2020). Remarkably, haptic 
communication in music education depends on music teachers’ 
understanding of the ethical boundaries of physical contact with their 
learners, as learners might be highly sensitive to being touched (Bremmer 
and Nijs, 2020).

Over the last decade, several haptic feedback-based devices for 
instrumental music training have been developed. Most of them are based 
on vibrotactile stimulators that provide real-time feedback whenever the 
player deviates from a target movement trajectory (van der Linden et al., 
2011), has incorrect body posture (Dalgleish and Spencer, 2014), deviates 
from the target pitch (Yoo and Choi, 2017), or provide guidelines to 
accurately execute rhythmic patterns that require multi-limb coordination 
(Holland et al., 2010) (see Figure 1 for the conceptual representation of 
these devices). Nevertheless, validation studies of these devices show that 
the efficiency of vibrotactile feedback is dependent on the player’s 
attentional needs, with some individuals experiencing difficulties 
concentrating on playing due to frequent and/or unclear vibrotactile input 
(van der Linden et al., 2011; Yoo and Choi, 2017). These findings suggest 
that vibrotactile feedback may not be the most effective type of haptic 
feedback for facilitating sensorimotor skill acquisition (van Breda 
et al., 2017).

Surprising as it may seem, however, little research has been 
conducted on technologies that actively assist musicians in 
developing prediction schemes while playing via physical forces that 
guide sensorimotor control (e.g., when the teacher holds and guides 
the student’s arm while playing). Yet, kinesthetic haptic feedback, 
which transmits force and position information of the motor target 
movement, is considered a more promising type of haptic feedback 
for promoting the development of sensorimotor abilities as it enables 
fine-grained movement guidance in space and time (Fujii et  al., 
2015; Pinardi et al., 2023). For example, the validation study of the 
Haptic Guidance System apparatus (HAGUS), a kinesthetic device 
that targets the optimal rendition of wrist movements during 
drumming, suggests that force haptic guidance is significantly more 
effective than auditory guidance alone at communicating velocity 
information (Grindlay, 2008).

Furthermore, with the possible exception of the MoveMe system 
(Fujii et al., 2015), which connects an expert and a beginner via two 
haptic robots to enable the expert to guide and correct the beginner’s 
hand movement in real time, it seems that none of the previously 
mentioned devices tackle interpersonal interaction, which is vital in 
joint music performance and learning (D’Ausilio et al., 2015; Nijs, 2019).

4 Haptic exoskeleton technology

Exoskeletons are body-grounded kinesthetic devices designed to 
closely interact with the structures of the human body. They are 
positioned on the user’s body to provide sensory touch information, 
serving as amplifiers to enhance, strengthen, or recover human 
locomotor performance (Zhang et al., 2017). In this paper, we focus on 
lightweight, portable upper-limb exoskeletons with spring mechanisms, 
consisting of two haptic robotic modules for the shoulder and elbow. 
In addition to shoulder and elbow active modules, the robotic interface 
also includes passive elements that stabilize the device and evenly 
distribute the reaction forces over the user’s body, as well as torque-
controlled, compliant actuators for accurate haptic rendering. This 
design allows the user to move the shoulder and elbow freely while 
receiving assistive action for flexion-extension.

This system is suitable for instrumental music training, particularly 
for these instruments that require relatively large arm movements for 
sound production, like strings or percussion instruments (see, e.g., the 
CONBOTS project, conbots.eu). Such a robotic system could convey 
force and position information on the motor target to the user, potentially 
improving prediction accuracy, accelerating, and facilitating the learning 
process. Exoskeletons might have the capability to not only provide haptic 
information to the user and guide his/her movement based on a targeted 
trajectory, but also to enable haptic communication between two 
exoskeleton-wearing users, allowing them to obtain accurate information 
on each other’s movements and forces in real-time (Takagi et al., 2017, 
2018). The physical communication between users could be  thus 
established by physically connecting two exoskeleton-wearing humans 
via a coupling mechanical impedance, which is haptically rendered in 
correspondence with the exoskeleton’s attachment points. As a result, 
users should experience a virtual impedance in accordance with their 
joints, whose equilibrium positions are based on the joint positions of the 
other user. Notably, the system’s visco-elastic properties enable real-time 
modulation of virtual impedance during tasks by adjusting spring/
damping coefficients.

5 Music interaction scenarios

In this section, we propose two experimental scenarios in which to 
test the efficacy of real-time haptic feedback mediated by exoskeletons for 
musical tasks. The first scenario is based on the unidirectional human-
machine interaction (see Figure 2A). The second scenario is based on the 
bidirectional human-human interaction (see Figure 2B).

5.1 Unidirectional human-machine 
interaction

The first scenario is based on a music playback system for violin 
beginners which involves a student who plays along with a video 
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showing the teacher. The video is augmented with haptic exoskeletons 
providing information about the teacher’s movement. Wearing the 
lightweight exoskeleton, the student receives both auditory, visual, and 

haptic information while performing the task (see Figure 2A). The 
student’s goal is to synchronize their bowing movements with the ones 
of the teacher. Besides following the teacher’s instructions 

FIGURE 1

A conceptual representation of state-of-the-art technologies developed for music playing. The systems typically include multiple sensors that track 
students’ physiological processes and provide real-time feedback on various movement and audio parameters related to their performance. They 
indicate when a player deviates from the target movement trajectory, adopts incorrect body posture, or deviates from the target pitch. They are usually 
designed to be used individually.

FIGURE 2

A conceptual representation of the real-time kinesthetic haptic feedback mediated by exoskeletons to enhance learning and performance. Besides 
providing haptic information to the users and guide their movement based on a targeted trajectory (A), this technology has the capability to enable the 
exchange of forces between two exoskeleton-wearing users, allowing them to obtain haptic information on each other’s movements in real-time thus 
enhancing sensorimotor interaction and facilitating entrainment effects between users without interfering with the general performance and flow of 
the lesson or rehearsal (B).
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audio-visually, students can also benefit from the haptic information 
on the actual movements performed during the lesson, thus 
introducing an additional information channel. It would be reasonable 
to hypothesize that such additional haptic feedback can enhance the 
action-perception cycles by providing additional information which 
fuels the student’s sensorimotor loop. The enrichment of action-
perception cycles might have, in turn, cascading positive effects on 
student’s performance of bowing movements and on learning pace. 
Improvements in bowing can be quantitatively assessed by comparing 
the parameters of movements (e.g., trajectory and smoothness) of a 
group of students who train with the haptic teacher with a control 
group of learners training with the video playback only.

5.2 Bidirectional human-human interaction

The second scenario shifts from individual training to joint music 
performance, where individual musicians operate as processing units 
within a complex dynamical system, with the objective to drive each other 
toward a common esthetic goal (D’Ausilio et al., 2012). For instance, string 
musicians in an orchestra who need to possess precise gesture 
coordination and motion synchronization to produce a unified, 
harmonious, and cohesive section sound. Performers currently exchange 
sensorimotor information through visual and auditory feedback (Biasutti 
et al., 2013). The central question at hand is whether bidirectional haptic 
feedback can serve as additional feedback that improves violinists’ 
co-regulated action in terms of bowing gestures coordination, motion 
synchronicity, tempo stability, volume balance, and tone blending.

In order to test it in an experimental setting, pairs of violinists (with 
varying expertise levels) might be  asked to perform the same piece 
multiple times in four different conditions: audio-visual-haptic, audio-
visual, audio-haptic, and audio-only condition. The experimental task 
would be  to perform a musical piece as well as possible as a group, 
especially in terms of tempo changes such as ritardando and accelerando, 
which require precise rhythmic co-regulation and synchronization. In 
order to exclude the influence of visual information in the audio-haptic 
and audio-only conditions, participants could be separated by a black 
curtain. The bidirectional haptic feedback would be activated through 
exoskeletons worn by participants throughout the experiment in the 
audio-visual-haptic and audio-haptic conditions only. Importantly, 
violinists should not be informed that the forces they feel are coming from 
their colleague. We hypothesize that the presence of haptic feedback 
would improve violinists’ performance because it provides direct or 
non-mediated sensorimotor feedback on motor parameters of bowing 
gestures. In contrast, indirect (or mediated) sensorimotor feedback via 
auditory and/or visual channels requires the translation from one 
modality (audio, visual) to another (motor). Our hypothesis is that direct 
(non-mediated) feedback will prove more effective than indirect 
(mediated) feedback. This improvement is expected to be even more 
significant in violinist pairs with less experience.

6 Discussion

6.1 Extension of the theoretical basis

As described in Section 2, the theoretical underpinning of 
collaborative interaction relies on the concepts of action-perception 

cycle and entrainment. Obviously, both concepts need further 
elaboration and refinement, for example in the direction of 
predictive processing (Clark, 2013), and expressive information 
exchange (Leman, 2016). The success of integrating haptic 
exoskeleton technology in a natural action-perception cycle indeed 
draws upon the ability of the user to feed and form predictive models 
of acting and interacting. The concept of entrainment thereby offers 
a dynamic perspective for understanding co-regulated actions. 
Concurrently, enabling bidirectional haptic feedback between two 
musicians could contribute to the emergence of novel research 
paradigms, the development of new metrics, and a deeper 
understanding of the mechanisms that govern action-perception 
cycles and entrainment.

To date, the level of unidirectional interaction can be assessed 
through the metrics developed in Campo et  al. (2023), which 
involves a comparison between movement information captured via 
a motion capture system with infra-red cameras, based on kinematic 
features, such as movement smoothness (SPARC, see 
Balasubramanian et al., 2015) or similarity of the bow gestures of the 
student relative to the teacher. Additional metrics can rely on 
angular information of joints provided by the exoskeleton. The 
bidirectional interaction could be measured by entrainment as it 
aims at indicating the effect of collaborative interaction via the 
dynamic change of actions. The angular velocity of the shoulder and 
elbow of each violinist using the exoskeleton, as well as the 
movement displacement of the upper and lower arm using a motion 
caption system can be used as signals. Bi-directional interaction may 
then be  mapped out using techniques from dynamical systems 
analysis, such as recurrence analysis (Demos et al., 2018; Rosso et al., 
2023), or cross-wavelet transforms (Torrence and Compo, 1998; 
Eerola et al., 2018).

6.2 Extension of the scenarios

Additional experimental scenarios in collaborative haptic 
interaction will be needed to allow for a clearer understanding of the 
effects of kinesthetic haptic feedback. Of particular interest might 
be the extension of the music playback scenario from unidirectional 
to bidirectional interaction. Differently from the bidirectional 
human-human scenario, in the playback scenario the bidirectional 
exchange would occur between the user and an AI teacher, trained 
via machine learning of bowing movements. Of course, the 
development of a bidirectional platform for interaction is a 
challenging task involving human-based AI. The unidirectional 
approach as well as understanding of adaptive mechanisms that 
might coregulate dynamics of haptic human-human interactions are 
steps toward such a bidirectional system equipped with advanced 
machine intelligence for interacting.

Furthermore, understanding the needs, preferences, and 
concerns of users is essential for the technology’s successful adoption 
and further development (Bauer, 2014; Mroziak and Bowman, 2016; 
Michałko et al., 2022). Since musicians typically rely on auditory and 
visual information for communication (Goodman, 2002; Biasutti 
et al., 2013), they may initially find this additional communication 
channel as distracting rather than beneficial. Therefore, to achieve 
successful technology adoption, a participatory design should 
be  carefully implemented, encompassing various validation 

https://doi.org/10.3389/fpsyg.2024.1327992
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Michałko et al. 10.3389/fpsyg.2024.1327992

Frontiers in Psychology 06 frontiersin.org

scenarios and intense interaction between the developers and end 
users at every stage of technology development (Bobbe et al., 2021; 
Michałko et al., 2022). This approach will not only help shape the 
design of the technology to better meet users’ expectations (Bauer, 
2014; Mroziak and Bowman, 2016), but it can also help verify in a 
proactive way the technical effectiveness of the devices themselves.

6.3 Extending music education

Traditionally, learning to play a musical instrument is mediated 
by verbal and non-verbal communication between the teacher and 
the trainee, including hand gestures, physical guidance, apart from 
the use of verbal imagery and metaphors (Williamon and 
Davidson, 2002; Nijs, 2019; Bremmer and Nijs, 2020). Each of 
these communication channels has been demonstrated to play a 
positive role in transferring instrumental music instruction and 
ideas (Simones et al., 2017; Meissner and Timmers, 2019; Bremmer 
and Nijs, 2020), but their drawbacks have also been identified, such 
as ambiguous interpretation, delayed feedback, and the fact that 
they only provide a rough approximation of the target movement 
(Hoppe et al., 2006; Howard et al., 2007; Grindlay, 2008). Some of 
the currently available devices provide real-time objective feedback 
to overcome these limitations (Schoonderwaldt and Demoucron, 
2009; Blanco et al., 2021), but they focus on movement and posture 
monitoring, reinforcing the master-apprentice approach, which 
has been criticized for emphasizing reproductive imitation over 
creative music making (Nijs, 2019; Schiavio et  al., 2020). 
Exoskeletons may be  a promising alternative to current 
technologies because they enable real-time, direct sensorimotor 
feedback between two users thereby supporting teacher-student or 
peer interactions, which are key to students’ long-term music 
engagement (Davidson et al., 1996; Zdzinski, 2021). Exoskeleton 
technology might also enhance learning and current 
communication channels (auditory and visual) without interfering 
with lesson performance or flow (see Figure 2B). It could be of 
interest to investigate the impact of various haptic modes of 
exoskeletons (bi-directional vs. unidirectional) on different 
pedagogical models, as well as its impact on interpersonal 
relationships between teacher-student and peers.

6.4 Extension to other domains

Haptic devices have been developed in the field of rehabilitation 
(Wu and Chen, 2023), sport science (Spelmezan et al., 2009), and 
mixed reality and gaming industry (Moon et al., 2023). However, little 
research has pointed out the potential benefits of collaborative 
interaction with force haptic feedback through exoskeletons. So far, 
research has predominantly concentrated on the action-perception 
cycle rather than the entrainment dynamics typical of collaborative 
interactions. Lightweight exoskeleton technology offers a huge 
potential in several (non-musical) domains of application where 
bidirectional, i.e., collaborative, interaction is useful, for example, in 
physiotherapy where movements are guided in interaction with the 
therapist (Bjorbækmo and Mengshoel, 2016). It could be of interest to 
investigate whether incorporating bidirectional haptic feedback via 

exoskeletons could improve the relationship between physiotherapists 
and patients, thereby allowing for a faster recovery process.

6.5 Limitations

The current state-of-the-art exoskeletons are considered 
lightweight compared to, for instance, exoskeletons used in factories; 
however, they might still be perceived as bulky and heavy especially 
when worn by children. The scalability of anthropomorphic features 
is also a critical issue for exchanging meaningful feedback between, 
say, a child and an adult, which are often paired in training/learning 
contexts. These exoskeletons therefore require the assistance and 
control of experts for correct attachment to limbs and for setting the 
different interaction paradigms such as unidirectional and 
bidirectional. More effort will be required for making these devices 
more user friendly and ready to be used out of the laboratory. Another 
important factor to investigate is the potential time delay between two 
users when exchanging forces. Further limitations are concerned with 
the restricted domain of application in music learning, with arm 
exoskeletons being less useful when playing brass or woodwind 
instruments, which produce sound through air emission and finger 
movements rather than shoulder and elbow movements.

7 Conclusion

In this paper, we envisioned the possibility of using lightweight 
robotic exoskeletons to allow for the exchange of haptic information 
during musical interactions. We introduced two possible validation 
scenarios involving violin playing to explore and test the feasibility of 
adding haptic information to the audio and visual channels on which 
collaborative interaction is based. These scenarios leverage on music 
playback systems and real-time interactive music making, especially 
in the context of learning. However, the application of kinesthetic 
haptic systems that allow for bidirectional force exchange may 
potentially extend to various domains, encompassing physical 
rehabilitation, sports, gaming, and those fields in which gestures and 
limb movements benefit from haptic guidance. In such scenarios, 
exoskeletons can be  employed to enhance the entrainment effect, 
ultimately fostering improved co-regulation activities.
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