
RAPID REPORT

Physically interacting humans regulate muscle coactivation to improve visuo-
haptic perception

Hendrik B€orner,1� Gerolamo Carboni,2� Xiaoxiao Cheng,2� Atsushi Takagi,3 Sandra Hirche,1

Satoshi Endo,1 and Etienne Burdet2
1Electrical and Computer Engineering Department, Technical University of Munich, Munich, Germany; 2Department of
Bioengineering, Imperial College of Science, Technology and Medicine, London, United Kingdom; and 3NTT Communication
Science Laboratories, Atsugi, Kanagawa, Japan

Abstract

When moving a piano or dancing tango with a partner, how should I control my arm muscles to sense their movements and fol-
low or guide them smoothly? Here we observe how physically connected pairs tracking a moving target with the arm modify
muscle coactivation with their visual acuity and the partner’s performance. They coactivate muscles to stiffen the arm when the
partner’s performance is worse and relax with blurry visual feedback. Computational modeling shows that this adaptive sensing
property cannot be explained by the minimization of movement error hypothesis that has previously explained adaptation in
dynamic environments. Instead, individuals skillfully control the stiffness to guide the arm toward the planned motion while mini-
mizing effort and extracting useful information from the partner’s movement. The central nervous system regulates muscle acti-
vation to guide motion with accurate task information from vision and haptics while minimizing the metabolic cost. As a
consequence, the partner with the most accurate target information leads the movement.

NEW & NOTEWORTHY Our results reveal that interacting humans inconspicuously modulate muscle activation to extract accu-
rate information about the common target while considering their own and the partner’s sensorimotor noise. A novel computa-
tional model was developed to decipher the underlying mechanism: muscle coactivation is adapted to combine haptic
information from the interaction with the partner and own visual information in a stochastically optimal manner. This improves
the prediction of the target position with minimal metabolic cost in each partner, resulting in the lead of the partner with the
most accurate visual information.

computational model; electromyography; human-human interaction; muscle coactivation; visuo-haptic perception

INTRODUCTION

Human muscles are elastic elements that increase stiff-
ness and shorten with activation (1). The central nervous sys-
tem (CNS) regulates the limbs’ stiffness by coordinating
muscle activation to shape the interaction with the environ-
ment (2, 3), but how this affects haptic sensing is not known.
When two connected individuals carry out a task together
(Fig. 1A), they exchange haptic information about their
motion plan to combine with own visual information and
improve their accuracy (4). Critically, haptic information
transferred by the mechanical connection is modulated by
their muscle coactivation (Fig. 1B). Could individuals regu-
late their muscles’ activation to adapt the limbs’ stiffness
and better sense the partner’s movement?

To understand how physically connected individuals con-
trol their arm coactivation, we observed 22 pairs of subjects or
dyads tracking a common randomlymoving target using wrist
flexion and extension (Ref. 5, Fig. 1A). Studies on the adapta-
tion to unpredictable force fields (6, 7) suggest that muscle
coactivation would increase with the magnitude of error to
their motion plan (3) independent of its source. However, we
hypothesized that interacting humans can adapt their muscle
coactivation to their own sensorimotor noise and to haptic
noise resulting from the interaction with the partner.

To test this hypothesis, we carried out an experiment in
which the visual feedback provided to the partners was
manipulated. The target observed by each partner on their
individual monitor was either sharp (a 8-mm large disk) or
fuzzy (a dynamic cloud of 8 normally distributed dots). We
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analyzed the tracking performance and wrist muscle activa-
tion of each partner and developed a computational model to
understand how muscle activation is adapted to each specific
noise condition.

METHODS

Participants

The experiment was approved by the Joint Research
Compliance Office at Imperial College London. Forty-four
participants without known sensorimotor impairments aged
18–37 yr, including 16 females, were recruited. Each partici-
pant gave written informed consent before participation.
Thirty-seven participants were right-handed, five left-handed,
and two ambidextrous, as assessed with the Edinburgh
Handedness Inventory (8). The participants carried out the
experiment in pairs or dyads. To avoid sex-related effects on
the interaction behavior (9), the experiment was carried out
by same-sex dyads.

Experimental Setup

The two partners of each dyad were seated on height-ad-
justable chairs, next to the Hi5 dual robotic interface (10).
They held their respective handle with the wrist of the domi-
nant hand and received visual feedback of the flexion/exten-
sion movement on a personal monitor (Fig. 1A). No visual
feedback of the partner’s position was available as the two
participants were separated by a curtain, and they were
instructed not to speak to each other during the experiment.

Each Hi5 handle is connected to a current-controlled DC
motor (MSS8; Mavilor) that can exert torques of up to 15
Nm and is equipped with a differential encoder (RI 58-O;
Hengstler) to measure the wrist angle and a sensor (TRT-100;
Transducer Technologies) tomeasure the exerted torque in the
range [0,11.29] Nm. The two handles were controlled at 1 kHz
with LabVIEW Real-Time v14.0 (National Instruments) and a
data acquisition board (DAQ-PCI-6221; National Instruments)
while the data were recorded at 100Hz.

The activation of two antagonist wrist muscles, the flexor
carpi radialis (FCR) and extensor carpi radialis longus (ECRL),
was recorded during the movement from each participant.
Electromyographic (EMG) signals weremeasuredwith surface
electrodes using the medically certified noninvasive 16-chan-
nel EMG system (10). The EMG data were recorded at 100Hz.

Tracking Task

The two partners were required to track the same visual
target “as accurately as possible” on their respective monitor
with (in degrees)

q�ðtÞ � 18:5 sin 2:031 t�ð Þ sin 1:093 t�ð Þ
t� � t þ t0; 0 � t � 20 s

ð1Þ

using flexion-extension movements (where t is the time). To
prevent the participants from memorizing the target’s
motion, t� started in each trial from a randomly selected off-
set time {t0 [ [0, 20]s jq�(t0) : 0} of the multisine function.
The respective tracking error

e � 1
T

ðT
0
q�ðtÞ � qðtÞ½ �2dt

 !1
2

; T � 20 s ð2Þ

was displayed at the end of each 20-s-long trial.
After each trial, the target disappeared and the partici-

pants had to place their respective cursor on the starting
position at the center of the screen. The next trial then
started after a 5-s rest period and a 3-s countdown. The initi-
alization of the next trial started when both participants
placed their wrist on the starting position, so that each par-
ticipant could take a break at will between trials by keeping
the cursor away from the center of the screen.

Experimental Conditions and Protocol

In solo trials, the two partners moved the wrist independ-
ently of each other. In interactive trials, the partners’ wrists
were connected by a stiff virtual spring with torque (in Nm)

sðtÞ ¼ 0:30 ½qpðtÞ � qoðtÞ� ð3Þ
where qo and qp (in degrees) denote own and partner’s wrist
angles, respectively.

The interaction trials were carried out under two different
visual feedback conditions. In the sharp condition the target
was displayed as an 8-mm-diameter disk. In the fuzzy condi-
tion the target trajectory was displayed with eight normally
distributed dots around the target. The cloud of dots was
defined by three parameters, randomly picked from inde-
pendent Gaussian distributions: the vertical distance to the
target position g [ N(0, 15 mm), the angular distance to the
target position gq [ N(0, 4.58�), and the angular velocity gq [
N(0, 4.01�/s). Each of the eight dots was sequentially replaced
every 100ms.
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Figure 1. Experiment to study how muscle coactivation varies during the
joint tracking of 2 connected humans. A: the partners track the same ran-
domly moving target with their wrist flexion-extension movement while
being connected with a rigid virtual bar. Their wrist flexion/extension
movement is recorded, as well as the myoelectrical activity of a flexor-ex-
tensor muscle pair. EMG, electromyogram. B: diagram of mechanical inter-
action with the partner and with own movement plan. The interaction with
the partner’s hand depends on the stiffness of the connection to their
motion plan modulated by their coactivation u. Both own and partner
movement plans are affected by the respective visual noise. C: protocol of
the experiment to study the effect of visual noise on either partner’s per-
formance and coactivation.
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A calibration of the measured EMG (described in Muscle
Activation Calibration and Cocontraction Calculation) was
first carried out to map the raw EMG signal (in mV) to a corre-
sponding torque value (in Nm), so that the activity of each
participant’s flexor and extensors can be compared and com-
bined in the data analysis. After this calibration, the partici-
pants carried out five initial solo trials to learn the tracking
task and the dynamics of the wrist interface. This was fol-
lowed by four blocks of 10 interaction trials, each with one of
the four different noise conditions [fuzzy(self)-sharp(partner):
FS, SF, SS, FF] presented in a random order, followed by five
control solo trials (Fig. 1C). The participants were informed
when an experimental condition would be changed but not
that they were connected to the partner or which condition
they would be encountering in the next trials.

Muscle Activation Calibration and Cocontraction
Calculation

The participants placed their wrist in the most comfort-
able middle posture, set to 0�. Constrained at that posture,
they were then instructed to sequentially flex or extend
the wrist to exert torque. Each phase was 4 s long and was
followed by a 5-s rest period to avoid fatigue. The latter pe-
riod was used as a reference activity in the relaxed condi-
tion. This procedure was repeated four times at flexion/
extension torque levels of {1,2,3,4} Nm and {�1,�2,�3,�4}
Nm, respectively.

The recorded muscle activity of each participant was then
linearly regressed against the torque values. The raw EMG sig-
nal was 1) high-pass filtered at 20 Hz by using a second-order
Butterworth filter to remove drifts in the EMG and 2) rectified
and passed through a low-pass second-order Butterworth fil-
ter with a 5-Hz cutoff frequency to obtain the envelope of the
EMG activity.

The torque of the flexor muscle could then be modeled
from the envelope of the EMG activity uf as

sfðtÞ ¼ a0 ufðtÞ þ a1 ; a0;a1 > 0 ð4Þ
and similarly for the torque of the extensor muscle se. The
torque due to reciprocal activation of the FCR [with sf(t) 	 0]
and ECRL [se(t)� 0] was computed as

vðtÞ � sfðtÞ þ seðtÞ ð5Þ
and the torque due tomuscle coactivation as

uðtÞ � minfsfðtÞ; jseðtÞjg ð6Þ
The average coactivation over all participants (as shown in

Fig. 2) was computed from each participant’s normalized
coactivation

un � �u � �umin

�umax � �umin
; �u � 1

T

ðT
0
uðtÞdt; T � 20 s ð7Þ

with �umin and �umax the minimum and maximum of the
means of all trials of the specific participant.

EXPERIMENTAL RESULTS
To evaluate the short-term adaptation within each condi-

tion, analysis was carried out on the average measurements
from the first and second half of trials (epochs). As the track-
ing error and muscle cocontraction were influenced by both
the subject’s own visual noise and the partner’s visual noise

(perceived through the spring interaction as haptic noise),
they were analyzed individually with a three-way repeated-
measures ANOVA with visual noise, haptic noise, and epoch
as the factors in the analysis of the tracking error and cocon-
traction level. Bonferroni–Holm correction was used to cor-
rect for type I error in multiple post hoc comparisons for
eachmetric.

We see in Fig. 2A that the error had decreased by the last
of the initial solo trials to the same degree as the average of
the last solo trials (P = 0.27, paired-samples Wilcoxon test).
This indicates stable performance to analyze the different
interaction conditions. The ANOVA of tracking error in these
conditions indicated that themagnitude of the tracking error
depended on both visual noise level [F(1,43) = 359.95, P <

0.001, g2
p = 0.21] and haptic noise level [F(1,43) = 210.46, P <

0.001,g2
p = 0.12]. There was an interaction effect between vis-

ual and haptic noise [F(1,43) = 14.83, P < 0.001, g2
p = 0.008].

Post hoc comparisons showed that there was no significant
difference between noise conditions SF and FS (P = 0.14),
while both were greater than in the SS condition (P < 0.001)
and smaller than in the FF condition (P < 0.001). The track-
ing error remained at a similar level between the first and
the second epochs (P = 0.38), and there was no interaction
effect between either noise level and epoch (P > 0.15). Note
that the connection with the partner improved the tracking
performance, so that the error was smaller in the SS condi-
tion than in the solo condition [paired t test, t(43) = 6.22, P <
0.001]. This confirms observations in a similar task carried
out on different setups (4, 11, 12).

The cocontraction level decreased with the epoch [F(1,43) =
53.58, P < 0.0005, g2

p = 0.56], similar to what was observed
during the learning of force fields (3, 13) (Fig. 2B). Importantly,
the cocontraction decreased with a larger level of own visual
noise [F(1,43) = 85.91, P < 0.0005, g2

p = 0.67], whereas it
increased with haptic noise from the interaction with the part-
ner [F(1,43) = 5.53, P < 0.03, g2

p = 0.11]. Post hoc comparisons
confirmed that all differences between the combinations of
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Figure 2. A: evolution of group mean tracking error charted as a function of
trials, where error bars represent 1 SE. The error saturated in the initial solo
trials and increased with visual and haptic noise. B: evolution of normalized
cocontraction as a function of trials, where error bars represent 1 SE.
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the visual and haptic noises were significant, with the excep-
tion of FS versus FF (P = 0.99).

To analyze how this adaptation is affected by the wrist an-
tagonist muscles, we computed their reciprocal activation
(RA, defined in Eq. 5) and coactivation (CA, Eq. 6) in the last
trial. As shown in Fig. 3A, the mean RA over the subjects var-
ied (with standard deviation 0.5 Nm) much more than the
CA (standard deviation 0.1 Nm). Furthermore, RA was well
correlated with the hand trajectory (jPearson correlationj >
0.8 with P < 0.05), but CA was not correlated (jcorrelationj <
0.1 with P < 0.05). Figure 3B shows that RA exhibited a spec-
trum similar to the target trajectory, with peaks around 0.15
Hz and 0.5 Hz, whereas the spectrum of CA was essentially
flat, exhibiting only a much smaller peak around 0.5 Hz.
These results show that the RA was driving the tracking
movement whereas the level of CA was regulated specifically
to each noise condition.

In summary, the experimental results indicate that during
interaction the CNS spontaneously regulated muscle coacti-
vation considering the level of the visual noise on one’s own
and the partner’s targets, in agreement with our hypothesis.
As a consequence, the partner with more accurate visual in-
formation increases their coactivation and thus their stiff-
ness (14) and leads the movement. Conversely, the partner
with less accurate visual information decreases their stiff-
ness and thus their influence on the dyad’s motion control.
The interactive behavior of the dyad results from the equilib-
rium of the coactivation adaptation in the two partners
modulated by their respective sensory noise.

COMPUTATIONAL MODELING
What is the principle behind this adaptation? As the par-

ticipants were not aware of the connection with the human
partner (11), would coactivation be adapted as when interact-
ing with a dynamic environment? Therefore we first tested
the computational model of Ref. 3 that explains the motor
learning in novel force fields. In this model, the coactivation
u increases with each new trial to minimize tracking error e
and decreases tominimize effort, according to

unew � ae þ ð1� cÞ u ; 0 < a; 0 < c < 1 ð8Þ

For each of the four noise conditions ij [ {SS, SF, FS, FF}, the
initial cocontraction level fûijð1Þg was set as the initial experi-
mental value fuijð1Þg. Then, by using the respective trial-by-
trial tracking error {eij(k)}, k = 1,. . ., 10 from the experiment,
the adaptation parameters a,c in the computational model of
Eq. 8 were computed to minimize the error between the
learned cocontraction values after 9 iterations fûijð10Þg and
the corresponding data fuijð10Þg in last experiment’s trial:

ða�; c�Þ � argmin
a;c

�X
i; j

ûijð10Þ � uijð10Þ
� �2� ð9Þ

The parameters a�: 0.5, c�: 0.06 were found by using a
grid search with a step 0.01 in the range [0,2]
 [0,1.5].

Simulation of the learning during the 10 trials of each
condition with this tracking error minimization (TEM)
model predicted cocontraction at a level increasing with
the corresponding tracking error (Fig. 4A). This prediction
is qualitatively different from the data, such as larger coac-
tivation in the fuzzy relative to the sharp visual feedback
condition (e.g., compare the FF and SS conditions in
Fig. 4A). Therefore, the TEM model cannot explain the ad-
aptation in the coactivation during interaction.

The hand movement depends on the guidance toward the
planned movement and on the connection to the partner
(Fig. 1B). As the stiffness of the guidance increases with own
coactivation (2), it is possible to weigh these two influences.
Coactivation should decrease to lower the guidance to the
planned movement when it is affected by visual noise.
Conversely, the guidance to the plannedmotion should increase
to counteract the effect of haptic noise when the partner
receives noisy visual feedback. Therefore, the coactivation may
depend both on the statistical information determining the
quality of the planned motion, which relies primarily on vision,
and on the partner’s accuracy in tracking the common target.

We thus propose that coactivation is modulated to maxi-
mize information from visual information and haptic in-
formation from the interaction with the partner. We
introduce the optimal information and effort (OIE) model
that addresses the trade-off between motion guidance and
interaction noise attenuation, by selecting coactivation u
to minimize the prediction error E(u) and metabolic cost
u2, with the cost function

VðuÞ ¼ EðuÞ þ c
2
u2 ; EðuÞ � r2

oðuÞr2
p

r2
oðuÞ þ r2

p
ð10Þ

where ro(u) results from the effect of own visual noise on the
armmovement and rp from the interaction with the partner.
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Figure 3. Activation of antagonist wrist muscles in the last trial. A: reciprocal
activation (RA) and coactivation (CA) in the last trial averaged over subjects.
The waveforms were aligned in time before averaging to compensate for
the different temporal delays in Eq. 1. Selecting the first 10 s in aligned wave-
form enables us to consider 25 of the 44 subjects for the averaging. B: the
RA spectrum exhibits the same peaks as the target movement, whereas
the CA spectrum is essentially flat.
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This minimization can be carried out through gradient
descent minimization:

unew ¼ u� dVðuÞ
du

¼ �dEðuÞ
du

þ ð1� cÞ u ; 0 < c < 1

�dEðuÞ
du

¼ r2
p

r2
oðuÞ þ r2

p

" #2
�dr2

oðuÞ
du

� �
> 0

ð11Þ

The target tracking arises from the internal guidance to
the plannedmotion and the mechanical connection with the
partner, both being subjected to the noise in the respective
visual feedback (Fig. 1B).

How should the deviation ro be modeled? First, let rmo

describe the tracking deviation of own wrist movement
due to the target cloud. Second, the wrist’s compliance
influences the tracking performance and brings in noise
in the planned movement (5). Assuming that these two
effects are independent and that the wrist’s viscoelasticity
results in zero mean noise with deviation rκo(u), the devia-
tion in the wrist can be calculated as

r2
oðuÞ ¼ r2

vo þ r2
joðuÞ ð12Þ

where rκo(u) = 5.18 þ 49.65e�6.11u was identified as the
least-square fit of data from the haptic experiment in
Ref. 15.

Considering the relationship between the deviation rκo

and the wrist’s viscoelasticity, the visual noise deviation
and the partner’s noise deviation each have two values,
resulting in four parameters to identify: frs

vo;r
f
vo;r

s
p;r

f
pg,

where “s” corresponds to the sharp and “f” to the cloudy
target. These parameters, used in the noise models of Eq.
12, were computed by minimizing the variation of the cost
derivative:

rs�
vo;r

f�
vo;r

s�
p ;rf�

p

� 	
�

argmin
rs
mo;r

f
vo ;r

s
p;r

f
p

(X
i

X
j

oV
ou

uijð10Þ; rðiÞ
vo; r

ðjÞ
p

� 	� �2) ð13Þ

Using the collected cocontraction data {uij(10)}, a grid

search for rs
vo;r

f
vo;r

s
p;r

f
p

� 	
with manually presearched range

in [0,12] 
 [0,20] 
 [0,10] 
 [0,20] with step 0.2 yields
rs�
vo ¼ 10; rf�

vo ¼ 18:8; rs�
p ¼ 5:2; rf�

p ¼ 6, where for each grid
point c� = 0.65 was the solution of

0 � d

dc

X
i

X
j

oV
ou

ðuijð10Þ;rðiÞ
vo;r

ðjÞ
p Þ

� �20
@

1
A ð14Þ

As can be seen in Fig. 4A, the OIEmodel predicts the mod-
ulation of coactivationwith both own visual noise and haptic
noise from the partner as observed in the data, in contrast to
the TEM model. The adequacy of the OIE is further shown
from the Akaike information criterion (AIC): the small sam-
ple size-normalized AIC value (16, 17) using OIE model pre-
diction is �6.2, smaller than the value of �2.8 for the TEM
model, suggesting that OIE is a better model than TEM con-
sidering the information loss and the number of independ-
ent parameters. The OIE model can be used to predict the
coactivation for any level of own and partner’s noise, as
shown in Fig. 4B.

DISCUSSION
These experimental and computational results demon-

strate that interacting humans modulate their muscles’ acti-
vation to extract accurate information about the common
target considering own and partner’s noise. Although it has
been known that muscles’ activation is adapted to shape the
mechanical interaction with the environment (2, 7), our
results reveal that the CNS further regulates the limbs’ vis-
coelasticity to extract optimal sensory information from the
interaction. Not only do individuals share haptic informa-
tion to extract each other’s motion plan (4), but they further
learnmuscle activation to improve this estimation.

These results could not be explained by previous models
of coactivation adaptation in dynamic environments, which
consider only the error in the task performance (3, 18, 19).
However, the observed coactivation changes with both own
and partner’s noise were well predicted by the OIE model
introduced in this article. The OIE adapts coactivation to
maximize information from vision and haptics arising from
the interaction with the partner while minimizing energy by
reducing coactivation.

This mechanism skillfully regulates coactivation to extract
maximum sensory information while exploiting the guidance
potential from the partner: Coactivation decreases to rely
more on the partner guidance when vision is fuzzy and
increases when the interaction with the partner is noisy. As
end-point stiffness increases with the coactivation (14), the
partner with more accurate information appears to lead the
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Figure 4. Results of computational modeling of the coactiva-
tion adaptation to own and partner noise. A: comparison of
coactivation observed during the experiment and predicted
by the 2 models described in the text. The tracking error
minimization (TEM) model cannot catch the modulation of
coactivation with different noise conditions observed in the
data, whereas the optimal information and effort (OIE) model
predicts their trend well. B: the OIE model predicts a
decrease of coactivation with own noise and an increase
with partner noise.
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movement. This “leadership” does not depend on any part-
ner’s character but relies on the quality of sensory informa-
tion in the partners. The interactive behavior then results
from the concurrent adaptation of muscle activation in the
partners induced by their respective sensory noise, where the
more skilled partner increases their coactivation and thus
their lead and the less skilled partner decreases coactivation
and thus their influence on the dyad’s motion control. While
these results were observed in a collaborative task, dyads with
conflicting goals may usemore complex strategies.

The OIE model, specifying how the CNS adapts coactiva-
tion to minimize prediction error and energy, extends previ-
ous work on motor learning and adaptation. Although the
models in Refs. 20, 21 could determine the motion kinematics
in the next trial from the movement error in previous trials,
this newmodel also considers the limbs’ neuromechanics and
can thus predict the interaction force and the subsequent
muscle activity during motion. The OIE also extends optimal
and nonlinear adaptive control models (3, 19, 22–24) by con-
sidering the consequence of action on the acquired sensory
information from the environment, closing the loop between
the sensory and motor actions. This adaptive sensing mecha-
nism may give rise to interactive robots that can modify their
rigidity to optimally sense their user and best assist them.
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