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Abstract—Rationale: Whether working together to move a
table or supporting a child learning to ride a bike, physically
connected individuals use the exchange of haptic information
to improve motor performance. However, this improvement
occurs at the cost of additional effort for the more skilled
partner. Objective: Here, we aim to assess whether an asym-
metric connection, consisting of a stiffer link to the less skilled
partner, could increase performance without additional effort in
collaborative tasks. Methods: Through computational modelling,
we first evaluated such a hypothesis on simulated human dyads
tracking a common target. The approach was then experi-
mentally validated on a three degree-of-freedom tracking task
using two commercial robots as individual interfaces. Results:
The simulation and experimental results confirm that using an
asymmetric connection stiffness can improve joint performance
without requiring additional effort from either partner compared
to solo performance. Conclusion: This suggests that the training
of motor skills with a proficient partner – like a physical therapist
assisting a patient or a violin teacher demonstrating bowing
techniques – may be enhanced through the use of robot-mediated
asymmetric haptic communication.

Index Terms—Human-robot interaction, joint action, human
motor control

Impact Statement—Using an asymmetric connection in a dyad
enables the partners to improve their common performance
without additional effort.

I. INTRODUCTION

Humans perform collaborative tasks in a wide range of
everyday actions [1], [2], [3], [4], [5], [6], [7], [8], from
moving furniture together or tango dancing, to more asym-
metric collaborations such as a therapist assisting a patient in
physical training or a violin teacher holding their student’s arm
to demonstrate how to perform bowing movements. These col-
laborations rely on haptic communication where recent results
suggest that the exchange of haptic information between con-
nected humans improves the performance of both partners [9],
[10], [11] and their motor learning [12]. In addition to enabling

haptic communication, the mechanical connection guides the
less skilled person with a better performing trajectory but also
deviates the more skilled one from the target. Importantly, the
improvement of both partners’ performance comes at the cost
of a higher effort for the better one [13].

Could this effort-performance trade-off from two partners
performing a task together be improved by making the
more skilled partner have a larger influence on the coupled
movement? In direct human-human interactions, the forces of
both partners oppose each other, as expressed by Newton’s
third law. However, connecting for instance a physiotherapist
and a patient via personal robotic interfaces enables the
implementation of an asymmetric interaction, where the less
skilled partner is stiffly connected to the more skilled partner’s
movement, who feels little resistance from a soft connection
to the less skilled partner. This can be achieved through
the use of a robot-mediated connection between the partners
(see Fig. 1A). Our hypothesis is that the stiff connection will
provide the less skilled partner with good guidance and haptic
information, while the softer connection will still provide the
more skilled partner with haptic information but attenuate the
perturbing force, thus reducing the additional effort required
for accurately controlling the movement.

To test this hypothesis, we consider a task where two
partners have to track a common moving target. Modulating
the tracking performance using visual noise, the interaction
force can be regulated by an asymmetric connection stiffness,
so that a better performing partner can exert higher force on
the other. Assuming that a user obtains information about their
partner’s motion plan through haptic communication, which
they combine with their visual information of the target [14],
[13], we first simulated this strategy with both symmetric
and asymmetric stiffness. The predictions from the model
were then tested in an experiment using both symmetric and
asymmetric connections with 20 healthy participants (grouped
in 10 dyads), modulating their motor skill using visual noise
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[13]. In contrast to previous studies that tested with high-
performance haptic interfaces in horizontal tasks with only one
or two degrees-of-freedom (DoFs) [10], [14], [13], [11], our
task involved three DoFs and gravity. It was also implemented
using two commercial robots (see Fig. 1B), thereby validating
its suitability for more realistic use cases.

II. RESULTS

A. Simulated asymmetric stiffness behaviour

To simulate the effect of asymmetric stiffness on human-
human physical interaction, we extended the model of haptic
communication, developed in [13], for one DoF tracking and
symmetric stiffness. This model is based on four principles:
i) each partner’s central nervous system (CNS) realises that
the haptic feedback signal it receives is related to the visual
tracking task; ii) using an impedance model of the partner’s
control, the CNS then extracts the partner’s target from the
interaction; iii) it combines its own and the partner’s targets
in a stochastic optimal way, yielding Bayesian sensor fusion
across the haptic channel; iv) the haptic connection with the
partner is considered as a source of additive noise, where
a more compliant connection has a larger deviation than a
stiff one. To create an asymmetric connection with different
stiffness levels for the two partners, we modified ii) by
increasing the interaction stiffness gain from the more skilled
partner to the less skilled one and decreasing the stiffness gain
from the less to the more skilled partners (Fig. 1A). This also
increases the more skilled partner’s influence on the target
estimation of the less skilled partner.

This model was tested through a simulation of the tracking
of a randomly moving target in the three DoFs (x, y, φ)
of translation and rotation in a vertical plane (Fig. 1B). To
examine the influence of the tracking skill, one participant of
each dyad had a higher amount of visual noise (Fig. 1C), which
increased their tracking error (Fig. 1D). The other partner had
small amount of visual noise and was thus “more skilled” as
they had a smaller tracking error. The simulation consisted of
160 connected dyadic trials and alternated 160 disconnected
“solo” trials. Here, connected trials were conducted using low
(L: {Kx = Ky = 60 N/m, Kφ = 3 Nm/rad}) and high (H:
{Kx = Ky = 180 N/m, Kφ = 9 Nm/rad}) stiffness levels
independently for each partner. This resulted in two symmetric
{HH, LL} and two asymmetric {HL, LH} scenarios, where
the first stiffness listed in the dyad corresponds to the one felt
by the more skilled partner.

To evaluate the change in performance between connected
and solo trials, we computed the improvement of tracking error
I = 1 − ec/e with connection, where ec is the root mean
square tracking error in a connected trial and e the error in the
previous solo trial. The improvement (Fig. 2A) was affected by
the stiffness scenario (Friedman test, χ2 = 148, p < 0.001),
with the highest improvement for the asymmetric LH case (all
comparisons p < 0.001) and lowest improvement for the HL
case (all p < 0.001).

The overall change in effort required by connected trials
with respect to solo trials was also evaluated, through the root
mean square α of the simulated motor command. The change

of this parameter with connection, computed as A = αc/α−1,
is depicted in Fig. 2B with respect to the partner’s relative
error E = 1 − ep/e. The stiffness affected the interaction
effort (Friedman test, χ2 = 53, p < 0.001). The HH and HL
scenarios resulted in the highest participant effort, whereas
lower effort was observed in the LH condition and even less in
the LL case [HH = HL > LH (p < 0.001) > LL (p = 0.006)].
We fitted data through linear-mixed effect models considering
the improvement (or the effort) as the dependent variable,
the partner’s relative error as predictors and the dyads as
a random variable. The goodness of fitting resulted in R2

equal to 0.91 (HH), 0.87 (LL), 0.87 (HL), 0.93 (LH) for the
improvement and R2 equal to 0.18 (HH), 0.078 (LL), 0.49
(HL), 0.055 (LH) for the effort. Here, low values for the fitting
(as observed for the LH condition) indicate that there is no
correlation between the effort and the partner’s skill such that
the effort is balanced between partners.

In summary, simulation with our model of haptic communi-
cation suggests that asymmetric stiffness enables the reduction
of tracking error without an effort increase through the LH
scenario. Considering the trade-off between improvement and
interaction effort TO = (I+1)/(A+1) (Fig. 2C), LH appears
to be the optimal configuration, as for this measure LH > LL
> HH > HL (all p < 0.001).

B. Human-human experiments

Do physically interacting human-human dyads show similar
behaviour when connected through asymmetric stiffness as
predicted by our model? To test this, 20 healthy volunteers
(aged 22.5 ± 2.6 years old, 9 female, 18 right-handed)
participated in an experiment using the same tracking task
as described above. Participants provided written informed
consent, and were then paired in ten dyads with the same
handedness (assessed through [15]). Each participant sat with
a robot arm on their dominant hand side. The robot arm was
programmed to move in a vertical plane in front of them
and compensate for its own gravity. A monitor in front of
them displayed a target moving in the vertical plane and a
cursor corresponding to their hand movement (Fig. 1B). They
were separated from their partner by a curtain and were not
aware of the task performed by the partner, nor of a possible
physical connection with them. Figure 3A depicts the two
session experimental protocol, with each session composed
of three phases: familiarization, baseline, and test. The test
phase consisted of alternated trials with and without the
physical connection, with in total 40 trials with connection
and 40 without, where the stiffness conditions were pseudo-
randomized among the connected trials. One participant of
each dyad had a cloudy target with Gaussian visual noise [13]
(Fig. 1C), while the other partner had a sharp target. On the
second day, the partner with the noisy target was switched such
that each participant fulfilled both the “more skilled” and “less
skilled” roles.

Consistent with the simulation, the participants’ tracking
performance improvement (Fig. 3B) was also affected by the
stiffness scenario (Friedman test, χ2 = 92, p < 0.001). The
LH scenario was found to result in the most improvement [LH
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Fig. 1. Asymmetric connection concept and experiment task. (A) Concept: The connected partners receive visual and haptic feedback
while tracking. The one receiving noisy visual feedback is effectively “less” skilled at the tracking task and receives stronger haptic feedback
due to a stiff connection; the one receiving sharp visual feedback is effectively “more” skilled and receives weaker haptic feedback due to
a soft connection. (B) Paired participants, separated by a curtain, tracked the same moving target. Each of them was seated in front of a
monitor on which the target and their own cursor were displayed. The cursor was controlled by guiding a robot end-effector in the vertical
plane. The two robots connected the participants through a virtual elastic band with potentially different stiffness levels for each robot. (C)
The target display for the two partners of a dyad, with a single target for the sharp condition and a cloud of ten Gaussian distributed target
replicas for the noisy condition. (D) The tracking error increases with the noise magnitude, thus enabling us to degrade the “skill” of one
partner. In the experiment we used a standard deviation equal to 0 cm (and 0◦) and 2 cm (and 8◦), respectively for the “more” and “less”
skilled partner.

> HH (p < 0.001) > LL (p = 0.041) > HL (p < 0.001)]. The
experiment effort A, with α computed as the average muscle
activity recorded with EMG sensors on six arm muscles (see
Methods), was also impacted by the stiffness scenario (Durbin
test, χ2 = 36, p < 0.001; Fig. 3B). However, while a similar
trend to the simulation was observed, the experimental results
now found no difference between the LH and LL conditions
with HL > HH (p = 0.028) > LH (p = 0.004) = LL (p = 1).

Finally, the stiffness conditions affected the trade-off values
(Friedman test, χ2 = 107, p < 0.001) both across all
participants and when they were separated between more and
less skilled participants. For both groups, the asymmetric LH
and HL resulted in the highest and lowest value, respectively.
However, the symmetric conditions showed opposite results

for different relative participant performance. Here for the
less skilled participants the HH scenario allowed better perfor-
mance than the LL [LH > HH (p = 0.041) > LL (p < 0.001)
> HL (p < 0.001)]; the opposite occurred in the more skilled
group [LH > LL (p = 0.044) > HH (p < 0.001) > HL
(p < 0.001)].

As in the simulated data, we exploited linear-mixed effect
models to fit data obtaining R2 equal to 0.77 (HH), 0.58
(LL), 0.69 (HL), 0.61 (LH) for the improvement and R2 equal
to 0.037 (HH), 0.009 (LL), 0.18 (HL), 0.0012 (LH) for the
effort (see Supplementary Materials for more details on the
parameter fitting).
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III. DISCUSSION

We studied the mechanisms of haptic communication within
a tracking task requiring gravity compensation to evaluate
more complex and realistic scenarios than the previously
investigated simple one or two DoFs tasks. Our results in a
three DoFs task using commercially available Panda robots
confirm the benefits of haptic communication on more com-
plex tasks and using different robotic and visual interfaces
as in [16], [10], [14], [13], [11]. Critically, the experimental
results demonstrate that combining a rigid connection for less
skilled partners with a soft one for more skilled partners allows
for better tracking with less effort, as was predicted by the
computational model.

The model of haptic communication based on the exchange
of the motion plan between connected individuals introduced
in [14], [13] was extended to predict how individuals would
respond to asymmetric stiffness. As hypothesised, providing a
more rigid guidance to the worse partner and a soft connection
to the better one (the LH case), led to an optimal trade-
off between improvement and effort. The dependence on
stiffness observed in our experiment corroborates and extends
the findings of [13], [17]. Our results showed that tuning
differently the interaction in the two directions allows the
skilled partner to provide more information and guidance to
the less skilled one without increasing the effort to overcome
their potential perturbations.

While the improvement results matched previous findings

and simulations, we note that there was a difference between
simulated and experimental effort results. In the simulation, a
soft symmetric connection (LL case) led to a lower effort than
the asymmetric LH case, while no difference was found in the
experiment. This difference might be caused by our model not
considering co-contraction nor gravity compensation which
both likely affected the muscle activity measured by EMG
sensors. Indeed, co-contraction has been shown to be used
by the more skilled participant to counteract disturbances
resulting from the worse partner [17].

In conclusion, by physically connecting individuals via
two robotic interfaces that can modulate their interaction, it
becomes possible to improve their performance with minimal
effort. In particular, using connecting robots or “conbots” to
create an asymmetric connection strengthening the influence
of the more accurate partner opens opportunities to optimally
modulate the physical interaction between partners, maximiz-
ing tracking performance without requiring additional effort
from the partners relative to solo performance. This can be
used in physical training and learning scenarios (see e.g. [18]),
where the teacher-student dyads will typically have highly
different skills, and in general to practice between partners
of different skill, such as two patients or a patient training
with e.g. a family member.
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IV. MATERIALS AND METHODS

A. Simulation model and protocol

The behaviour of a connected dyad (Fig. 1A) was simulated
modelling each individual’s actions through the combination
of a motor controller and an observer. The observer consisted
of a Kalman filter considering the linear system dynamics{

z(t+ 1) = Az(t) +B[u(t) + F(t)]

w(t+ 1) = Hz(t+ 1),
(1)

A =

[
1 dt1

0 1

]
, B =

[
0

dt I−1

]
, H =

[
1 0

1 0

]
,

where z = [q′, q̇′]′ represents the state of each partner’s hand,
with q ≡ [x, y, φ]′ the coordinates of the three DoFs, dt the
time step, w the measurement, F the interaction force, u the
motor command, I the inertia, 1 the 3× 3 identity matrix and
0 the 3× 3 null matrix. Here, the interaction force F was given
by

F = K(qp − q) +D(q̇p − q̇), (2)

where p refers to the partner’s variables, considered the visco-
elastic force/torque resulting from the connection between
participants with stiffness K and damping D.

The Kalman filter considered the measurement w =
[q̂′

v, q̂
′
h] obtained from the participant’s visual (v) and haptic

(h) feedback, both affected by noise (VN and HN respectively).
Here the noise associated with the haptic information is
composed of the coupled effect of their partner’s visual noise
and the stiffness-dependent impact of communication over a
haptic channel (i.e., the higher the stiffness connection, the
lower the noise). These noise components are expressed, for
the subject i ∈ {1, 2}, through the covariance matrix

Ri =

[
V Ni 0

0 V Nj +HNi

]
, (3)

where j ∈ {1, 2} and j ̸= i indicates the other partner. V Ni is
the standard deviation of the visual noise affecting the target
for subject i, V Nj the standard deviation of the visual noise
affecting the target for subject j, and HNi defines the noise
over the haptic information of the subject i, which is related
to the connection stiffness.
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The motor controller for each participant determined the
motor command u through the linear control law

u = L′(ẑ∗ − z
)
, (4)

where L denotes the control gain and ẑ∗ their estimate of the
target state obtained through a Kalman filter. In the present
work we provided the Kalman filters of the two subjects
with the same information about the target, i.e., we did not
considered a second Kalman filter for the estimate of the
target’s partner as in [13]. L was obtained by minimising the
quadratic cost composed of the participants’ error and effort
such that

J =

∫ ∞

t=0

e′Qe+ u′Ru dt , (5)

where the error cost matrix and effort cost matrix were set
as Q = diag(25, 200) and R = 0.01 when considering the
translational DoFs and Q = diag(104, 8·103) and R = 10−8

when considering the orientation DoF.
The inertia, stiffness and damping parameters were esti-

mated from the real experiment system (Panda robot + human
arm) and accordingly set as

I =

2.917 0 0

0 6.257 0

0 0 0.0026

 kg m2,

K =

Kx 0 0

0 Ky 0

0 0 Kφ

 ,

D = 0.005


√
Kx 0 0

0
√
Ky 0

0 0
√
Kφ

 .

Depending on the stiffness scenario, the stiffness matrix K
was set high (H: {Kx = Ky = 180 N/m, Kφ = 9 Nm/rad}),
low (L: {Kx = Ky = 60 N/m, Kφ = 3 Nm/rad}) or null for
solo trials.

Two preliminary experiments were conducted to estimate
the mapping from participant i-th tracking errors to the amount
of visual noise (V Ni) and connection stiffness (HNi). In
both experiments we evaluated the performance of individuals
executing three DoFs tracking tasks while receiving different
noise. This considered different amounts of visual feedback
noise -four noise levels plus a no-noise condition- or haptic
feedback {low or high} stiffness connection with the target.
During the task, participants could only use the provided visual
or haptic feedback (details on these experiments can be found
in Supplementary Materials).

A total of 160 trials were simulated, where the 30 s target
trajectory was set to a multi-sine for all the DoFs such that

x(t) = 6.4 sin(1.8 t) + 2.5 sin(1.82 t) + 4.3 sin(2.34 t)

y(t) = 3 sin(1.1 t) + 3.2 sin(3.6 t) + 3.8 sin(2.5 t)

+ 4.8 sin(1.48 t)

ϕ(t) = 20 sin(1.4 t) + 12 sin(2.5 t) + 17.5 sin(1.8 t)

+ 8.1 sin(2 t) .
(6)

Symmetric and asymmetric conditions were tested for the
haptic connection, through the four conditions {HH, LL, HL,
LH}. Individual skill levels were simulated as in [13] by
varying the amount of visual noise, within two ranges leading
to lower/higher errors (2−3.7 cm and 3.8−7 cm in terms of
position and 6◦−8◦ and 9◦−13◦ in terms of orientation)
as described in the results of the preliminary Visual Noise
experiment (see Fig. 1D and Supplementary Materials)

Human-human experiment

The study was approved by the Ethics Committee of Uni-
versità Campus Bio-Medico di Roma (HUROB protocol) and
carried out in accordance with the Declaration of Helsinki. 20
healthy volunteers (aged 22.5 ± 2.6 years old, 9 female, 18
right-handed) participated in the experiment after providing
written informed consent. Participants were randomly orga-
nized in ten dyads, where members of each dyad had the same
handedness (assessed through the Oldfield test [15]).

Each dyad’s partner sat in front of a monitor displaying a
randomly moving target and a cursor corresponding to their
hand movement while being connected to a robotic interface
(see Fig. 1B). A common reference system, centred in the
monitor centre, was used where cursor translations corre-
sponded to twice the physical translations, to let participants
reach the entire virtual workspace with feasible arm move-
ments. Partners were haptically connected through a visco-
elastic force/torque F that was the same as that employed in
simulation eq. (2). A curtain separated the paired individuals
hiding their partner and setup. Participants were informed that
they may encounter some force on the handle but were not
advised of the task performed by the partner nor of a possible
physical connection with them.

Each participant was required to track a target constrained to
the three DoFs {x, y, φ} in the vertical plane in front of them
with a diamond-like cursor by moving an ergonomic handle
fixed to the robot end-effector (Fig. 1B). The target moved with
the multi-sine trajectory eq. (6), where an offset (x0, y0, φ0)
was added so that for each trial, t started from a randomly
selected zero {t0 ∈ [0, 30]s , x(t0) ≡ y(t0) ≡ ϕ(t0) ≡ 0} of
the multi-sine trajectory, to minimize memorization. Overall,
the target was within a 26× 26 cm2 square workspace in the
virtual reference system, with a maximum rotation of ±55◦

with respect to the vertical axis.
The robotic interface (Panda by Franka Emika) constrained

the motion to the translation and rotation in the vertical plane.
To this aim, the robot was impedance controlled with low
impedance (i.e., “transparent” behaviour) along the task direc-
tions and high impedance along the constrained directions.
The robot torque vector was computed as τ = J′[Kce −
Dc(Jq̇)] + νBq̇ + C + g, where Kc and Dc are diagonal
6x6 matrices representing the stiffness and damping elements,
q̇ is the joint velocity vector and J is the 6x7 Jacobian matrix.
B is the residual damping matrix in the joint space, previously
estimated to compensate the damping of each robot joint (see
Supplementary Materials), ν = 0.8, C and g represent the
Coriolis and gravity contributions. e = pd − pa is the pose
error between the 6x1 desired (pd) and the 6x1 actual (pa)
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end-effector pose vectors. The diagonal components of Kc

along the constrained directions were set to 150 N/m and
20 Nm/rad for translational and rotational terms, respectively.
Along those directions, the desired pose pd was set equal to
the initial one, i.e., the centre of the task workspace. Whereas,
along the task directions ({y, z, φ} in robot base frame), the
stiffness components were set null in the solo trials, that is
the subject does not feel any interaction force. Along the
same directions, in the coupled trials, the stiffness was set
accordingly to the protocol and pd is the actual pose of the
partner, so that p1

d = p2
a and p2

d = p1
a, with the superscript 1

and 2 referring to the two partners.
The handle pose and velocity were estimated and recorded

by means of robot encoders and kinematic computation.
Surface electromyography (EMG) sensors (TrignoTM Wireless
System, Delsys) were employed to measure the muscle activity
of three arm flexors and three extensors involved in the task:
Pectoralis major, Posterior deltoid, Biceps brachii, Lateral
head of triceps brachii, Flexor carpi radialis, Extensor carpi
radialis longus.

To test partners with a range of different relative skill levels,
the individuals’ skill to carry out the task was modulated
through the addition of Gaussian visual noise on the target
(see Fig. 1C) of one partner per dyad [13]. In particular,
in the noisy condition the single target was replaced by a
cloud of ten replicas normally distributed around the target
pose -x, y and φ- with a standard deviation equal to 2 cm
for the position (x and y) and 8◦ for orientation (φ). These
values were chosen considering the error for different levels
of noise measured in a preliminary visual noise experiment
(see Fig. 1D and Supplementary Materials). To balance the
experimental condition, the same 20 participants underwent
a second experimental session with the other partner having
visual noise. Thus, the overall pool considered in the data
analysis was composed of 20 different dyads.

As in simulations, two sessions and four stiffness scenarios
were considered ({HH, LL, HL, LH}). During each experi-
mental session, dyads underwent 30 s trials (followed by 10
s break to prevent fatigue) in the following three phases:

1) Familiarization: six solo trials (with no physical con-
nection between partners) of which three were with the
visual noise and three were with the sharp target, in the
same random order for both partners.

2) Baseline: 20 solo trials, with visual noise for one partner
only.

3) Test: 80 alternating solo and connected trials, all with vi-
sual noise for one partner only (the same as the baseline).
The four stiffness conditions were randomized among
the 40 connected trials, resulting in ten repetitions per
condition.

In the second session with the same dyad, the visual noise
in the baseline and test conditions was assigned to the other
partner.

Data analysis

Raw EMG signals were filtered using a second-order But-
terworth band-pass filter in the 20-450 Hz range and a notch

filter at 50 Hz, then rectified and finally low-pass filtered using
a second-order Butterworth filter with a cut-off frequency of
5 Hz.

The filtered EMG data of each sensor was averaged over
time for each trial. Then, connected trial data was normalized
with respect to the value obtained from the previous solo trial.
The root mean square among normalized data of all the sensors
was used as an estimation of the effort. Since the first trial of
the task block was connected, the EMG value of such block
was normalized with the last trial of the baseline.

The tracking error was computed as the difference between
the target and the cursor separately along x, y and ϕ. The
root mean square of each error metric was computed along
each trial and then used to calculate the performance metrics,
i.e., the performance improvement (I), the interaction effort
(A) and the partner’s relative error (E), as described in the
Results section. All the metrics were computed separately for
each DoF and then averaged.

Linear mixed-effect models were used to fit with a
first/second-order polynomial respectively the effort and the
improvement with respect to the partner’s relative error, for
each stiffness condition from {HH, LL, HL, LH}. In partic-
ular, the relationship between improvement I and partner’s
relative error E was investigated employing a linear mixed-
effect model with I as the dependent variable, E and E2 as
predictors, and dyads as random effect, considering both E
and I the averaged value among the three DoFs, as follows:

I = β0 + β1E + β2E
2 + εI , (7)

where εI is the unexplained variance term associated with each
analysed dyad, considering the same ‘physical couple’ with
inverted noise conditions as two different dyads. A similar
analysis was carried out to fit the Effort A with respect to
the partner’s relative error E, considering this metric as a
predictor:

A = δ0 + δ1E + εA . (8)

Model simulation and data analysis were conducted on
Matlab 2020. The goodness of fitting was evaluated through
R2 and p values for the intercept and coefficients estimates.
Statistical analysis was performed using Jasp 0.16 [19]. After
having assessed the non-normality of the data through the
Shapiro-Wilks test, the Friedman test was employed to com-
pare the above-mentioned metrics, with the individual skill
(i.e., less or more skilled) and the stiffness condition (i.e.,
{HH, LL, HL, LH}) as main factors. Post-hoc analysis was
conducted using paired Wilcoxon test with the Bonferroni
correction.

SUPPLEMENTARY MATERIALS

Details on the model parameter identification, preliminary
experiments and additional analysis and results can be found
in Supplementary Materials.
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MODEL PARAMETER IDENTIFICATION

Human motor performance with/out a physical connection
was simulated by extending the haptic communication model
of [1] as described in the Methods section and depicted in
Fig. S1.

We conducted two preliminary experiments to estimate the
model parameters that relate the tracking error to the amount
of visual noise (Visual Noise Experiment) and connection
stiffness (Haptic Control Experiment), respectively. In both
experiments participants performed a tracking task in the same
configuration used for the main experiment.

The protocols were approved by the Ethic Committee of
Università Campus Bio-Medico di Roma and carried out ac-
cording to Helsinki Declaration. The participant groups of the
two experiments were different among them. All participants
performed one of these experiments after providing written
informed consent. The average tracking error, in terms of
position and orientation, resulting from the variation of the
visual noise standard deviation and the connection stiffness, is
shown in Fig. S2.

Visual noise experiment

Six healthy volunteers (all right-handed, aged 30.7 ± 6.9,
3 female), were asked to execute 50 trials of a three DoFs
tracking task in the solo condition. Five different levels of
Gaussian noise (including no noise) were added to the target
and randomly presented to the participants. The values of
standard deviation (SD) associated to ith noise level for
position p and orientation ϕ were computed as: SD|p,i = i
cm and SD|ϕ,i = i 4◦, where i ∈ {0, 1, 2, 3, 4}.

Using the results observed in the experiment of [2] (see
Fig. S2A and Fig. S2 B), we chose to use the second noise

level (i = 2) as the noisy target condition in our main
experiment. This noise level was chosen as it produced an
average error of about 10% of the target range of motion for
both position and orientation.

Haptic control experiment

As in the study [1], we conducted a haptic control experi-
ment to model the effect that the connection stiffness had on
the received haptic information. Eight healthy volunteers (all
right-handed, 31.2 ± 2.6 years old, 3 females) participated in
this experiment and were required to execute the same three
DoFs tracking task as used in the main experiment. Different
to the main experiment, only their cursor (and not the target)
was displayed on the monitor, where the target information
could only be understood through their connection to a virtual
spring along the 3 DoFs involved in the task. The stiffness
value of the rotational and linear springs was set high (H) for
the first ten trials and low (L) for the last ten trials, considering
the stiffness values used in the model and main experiment.

The results of this experiment, shown in Fig. S2C and S2D,
provide the relationship between the connection stiffness and
the conveyed haptic information, measured through tracking
performance. The obtained equations were used for the com-
putation of HN used in eq. (3) in the manuscript.

ADDITIONAL ANALYSIS ON PERFORMANCE DATA

To understand the effect of the participant’s relative ability
on their performance, we separated the data according to the
participants’ skill i.e., their visual noise condition (noisy vs
sharp target). From Fig. S3B it can be seen that the less
skilled partner (with the noisy target) improves in the HH
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and LH more than in the other conditions (p < 0.001), and
the converse holds for the more skilled partner (sharp target)
whose improvement is lower (p < 0.001) in the HH and
HL than in the LL or LH conditions. Additionally, LH is
the only condition with no observed performance deterioration
(I < 0; p = 0.825) for the more skilled individual (HH,HL:
p < 0.001; LL: p = 0.007).

The more skilled partners were also found to require more
interaction effort in the HH and HL conditions (Fig. S3B).
Moreover, their effort was significantly higher (p < 0.001)
than the less skilled partners’ effort in all cases except for the
LH condition where they are balanced (p = 0.89).

The average joint behaviour considering both members of
a dyad was also evaluated. Here, the average improvement
within dyads (Fig. S3C) was observed to be larger (p < 0.001)
in the LH condition than in all other conditions, with no clear
difference between the HH and LL conditions. Moreover, the
average dyad effort (Fig. S3D) was lower in the LH condition
(p < 0.001) than in the other conditions, except for LL. These
results further demonstrate the LH condition allows for the
highest participant improvement with the smallest amount of
effort across the dyad.

MIXED-EFFECT MODEL DATA FITTING

As in [1], a second-order linear mixed-effect model was
employed to describe the relation between improvement I and
partner’s relative error E (see equation 7), where I was set
as the dependent variable, E and E2 as the predictors. Both
E and I were considered as the averaged values among all
three DoFs.

A similar first-order linear mixed model has been exploited
to investigate the relation between Partner’s Relative Error
E and Effort A (see eq. 8 in the main text), with A as the
dependent variable and E as the predictor. In both models the
dyads were considered as a random effect. The obtained fitting
results are reported in Table S1 and S2.
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TABLE S1
IMPROVEMENT DATA FITTING PARAMETERS FOR THE SIMULATED AND EXPERIMENTAL DATA.

Simulated DataSimulated Data Experimental DataExperimental Data
Stiffness

Condition R2 Parameter Slope p-value R2 Parameter Slope p-value

Intercept 0.11 < 0.001 Intercept 0.15 < 0.001

HH 0.91 E 0.36 < 0.001 0.77 E 0.26 < 0.001

E2 0.060 < 0.001 E2 0.012 0.38

Intercept 0.10 < 0.001 Intercept 0.013 < 0.001

LL 0.87 E 0.28 < 0.001 0.58 E 0.17 < 0.001

E2 0.031 < 0.001 E2 0.014 0.36

Intercept 0.037 < 0.001 Intercept 0.078 < 0.001

HL 0.87 E 0.33 < 0.001 0.69 E 0.21 < 0.001

E2 0.85 0.0020 E2 -0.081 < 0.001

Intercept 0.17 < 0.001 Intercept 0.16 < 0.001

LH 0.93 E 0.32 < 0.001 0.61 E 0.25 < 0.001

E2 0.074 < 0.001 E2 0.072 < 0.001
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TABLE S2
EFFORT DATA FITTING PARAMETERS FOR THE SIMULATED AND EXPERIMENTAL DATA.

Simulated DataSimulated Data Experimental DataExperimental Data
Stiffness

Condition R2 Parameter Slope p-value R2 Parameter Slope p-value

HH 0.17 Intercept 0.062 < 0.001 0.034 Intercept 0.053 < 0.001

E -0.058 < 0.001 E -0.14 < 0.001

Intercept 0.013 0.023 Intercept -0.0033 0.46
LL 0.076

E -0.035 < 0.001
0.0070

E -0.079 < 0.001

HL 0.49 Intercept 0.048 < 0.001 0.18 Intercept 0.0079 < 0.001

E -0.13 < 0.001 E -0.24 < 0.001

Intercept 0.054 < 0.001 Intercept 0.017 0.004
LH 0.052

E 0.030 < 0.001
-0.0013

E -0.037 < 0.001
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