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Abstract— In this work, we evaluated the suitability of using
a 7 degrees of freedom robotic manipulator as a planar haptic
interface for studies in motor neuroscience. In particular, we
assessed to what extent it can measure human movement
and forces without applying undesired perturbations. To this
aim, we evaluated the amount of perturbation exerted by the
robot during planar reaching movements when controlled to
be as transparent as possible in the 2D task space, through
an impedance control. Two planar specular configurations of
the robot were tested, namely G1 and G2, which differ in the
position of the “elbow joint” in the workspace. For both con-
figurations, we estimated the inertial ellipsoids and simulated
the forces for human-like forward movements. Performance
was then experimentally assessed on 8 healthy participants, in
15 different positions in the workspace. The average handpath
perturbation decreased and settled to 6 mm after 2 minutes of
interaction. Interaction forces resulted specular for G1 and G2,
with mean values below 5 N. Overall, the robotic manipulator
resulted suitable for studies on planar reaching movements in
both configurations, with a preference for the G1 configuration
due to its symmetrical distribution of trajectory deviations,
which anyway remain well below 1 cm for movements of 15
cm.

I. INTRODUCTION

The use of robots to analyze or assist human motion is a
major and extensive topic both in research and rehabilitation,
particularly when concerning the upper limbs.

In motor neuroscience, robots have been used as a means
to analyze human movement while precisely and deliberately
perturbing it by providing, for instance, haptic disturbances,
in order to investigate motor adaptation to environmental
dynamics and uncover the rules that govern human motor
control. Indeed, robotic manipulators were used to apply sta-
ble and unstable force fields during human movements, while
measuring displacements and forces, in order to evaluate the
formation of motor memory [1]–[4].

In particular, the study of reaching movements perturbed
through planar robots has proven that humans build an
internal model of the perturbation field, which they use to
compensate for external forces during movements [5], [6].
Similarly, the use of robotic devices to measure forces ex-
erted by the human arm during planar movement in unstable
fields, proved that the Central Nervous System selectively
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controls the endpoint impedance to adapt to the environment
[7], [8].

Moreover, robotic devices have been also employed in
stroke rehabilitation for delivering enhanced sensorimotor
training in the case of a paralyzed upper limb [9], [10],
proving how rehabilitation conducted with a task-specific
robot resulted in a significant improvement for patients with
moderate disability [11].

Most of the robots employed in these studies on upper
limbs, both for rehabilitation or research purposes, are pla-
nar devices [12], [13]. The reason is twofold: i) a planar
workspace allows for a simpler mechanical and control
design of the robot; ii) planar movements allow to simplify
the model of the human arm and easily define additional
force fields as well as simple exercises when dealing with
rehabilitation tasks [14].

Besides their planar workspace, an important feature of
these planar devices is the low inertia at the end-effector,
achieved through hardware strategies (e.g. motors located at
the robot base), sometimes combined with software strategies
(e.g. active control of the motors to compensate for the
robot dynamics) [15], [16]. This feature, which prevents
unintended interference during the measures of human move-
ments, is crucial for neuroscience studies which aim at
inferring what regulates human motor control by applying
carefully controlled perturbations [17].

Here, we aim to investigate if general-purpose collabora-
tive robotic manipulators (COBOTS), which are designed for
human-robot interactive tasks with a wide range of possible
applications (i.e. not specifically designed for their use as
haptic interface), could be employed in motor neuroscience
experiments without inadvertently affecting the task out-
come. Thus, we evaluated the feasibility of using a 7 Degrees
of Freedom (DoFs) robotic manipulator, i.e. Panda Robot, as
a transparent haptic interface in motor control and adaptation
studies. In particular, we assessed the amount of perturbation,
quantified by the deviations from the straight path, and the
amount of interaction forces provided by the robot on the
human arm during planar reaching movements across the
workspace.

To test the robot’s suitability for such planar tasks, we
constrained its motions to a 2D workspace, using a selective
impedance set to zero in the 2D task space and to high values
for the other directions (II-B). We tested two alternative robot
configurations compatible with the requirements of the tasks,
which differ in the position of the “elbow joint” in the space
(see II-A and fig. 1), to assess which one is affecting human
performance less.



To assess the theoretical impact of robot dynamics, we first
simulated the inertia ellipses of the robot in different configu-
rations across the workspace (II-C and II-D). Then, we tested
it in a reaching task on eight healthy volunteers, measuring
the movement deviations and the interaction forces (II-E and
II-F). The robot was controlled using an impedance control,
which included the compensation for known robot dynamics,
in terms of gravity, Coriolis and centrifugal contribution and
joint viscous friction.

This study opens the way to the use of general-purpose
collaborative manipulators to conduct human experiments in
motor neuroscience, which will permit the implementation of
a wider range of possible tasks and with a larger workspace
with respect to specific haptic interfaces. In fact, the higher
number of DoFs of a robotic manipulator rather than planar
robots might allow the extension of motor control studies to
more complex tasks, facilitating the translation of knowledge
to real-life applications, such as in less structured rehabilita-
tion scenarios.

II. MATERIALS AND METHODS

To assess the suitability of a 7-DoFs manipulator (Panda
Robot by Franka Emika GmbH) as a transparent haptic
interface, we evaluated the amount of interference provided
by the robot on human motion during a reaching task
performed in the horizontal plane.

Although the ideal scenario would be the robot providing
null forces, we expect a non-null force field due mainly to
robot inertia. In fact, despite the active control implemented
for compensating the effect of gravity, Coriolis and joint
viscous friction, the kinematic chain, including links, motors
and sensors, leads to non-negligible inertia when the robot
is manually moved.

This inertia contribution was first estimated, in terms of
2D inertia ellipses in the task space and inertial forces,
through the simulation of the robot model in the different
configurations across the workspace. Then, we conducted an
experiment on healthy volunteers to assess how much the
actual dynamic of the robot affects natural movements in real
conditions during human-robot interaction. The evaluated
workspace was defined by the positions reachable on average
by the human hand during planar movements, with the hand
moving at the same height as the shoulder (see fig. 2).

A. Planar Configuration

The robot was arranged into a planar configuration, i.e.
with the end-effector moving only in the horizontal plane,
by moving the elbow joint and the end-effector to the
same height as the robot base (note that the first rigid
link is considered here as though part of the base). This
planar configuration allows to implement planar motions by
moving only 2 robots joints, and can be set up either with a
clockwise or counterclockwise rotation of the elbow joint, i.e.
leading to two mirrored configurations named G1 and G2,
as depicted in figure 1. In the present work, we evaluated
both configurations in terms of perturbation provided to the
movement of participants during reaching tasks.
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Fig. 1. Schematic representation of the robot configurations. The robot is
positioned in a planar configuration with the elbow and end-effector on the
same horizontal plane as the robot base. The green dashed line represents
the middle line (y-axis) of the workspace. In configuration G1 the robot’s
elbow is located on the left side of the workspace, whereas in configuration
G2 is located on the right side.
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Fig. 2. Experimental setup in configuration G2. The participant is seated in
front of the robot with the head aligned with the robot base and the monitor
and holds the ergonomic handle fixed on the end-effector. The participant’s
hand, elbow and shoulder lay onto the same horizontal plane (xy). The arm’s
weight is compensated through a strap fixed to a slider.

B. Robot Control

During the task, the robot was controlled through an
impedance control (by means of a torque control), with a
high impedance along all the directions except the ones
involved in the task, i.e., the translations on the horizontal
plane, where the robot presents null impedance, making the
robot as transparent as possible in the task space. Overall the
commanded torque τ resulted composed of three contribu-
tions:

τ = τs + τw + τn . (1)

The first torque vector was calculated as follows:

τs = JT [Ke−D(Jq̇)] + C + g , (2)

where J is the 6x7 Jacobian matrix, e = pd–p is the error
vector, with p the 6x1 vector of the actual end-effector pose
with respect to the base frame and pd is the desired pose,
which is set to be equal to the starting pose. K and D are
the 6x6 stiffness and damping matrices expressed in the
Cartesian space, and C and g represent the Coriolis and
centrifugal, and gravity generalized forces in the joint space,



respectively. In order to constraint movements along the hor-
izontal plane, the impedance was selectively set along space
directions. Stiffness and damping values were chosen to be
very high along the z-axis for translations and all three axes
for rotations, while zero along the 2 translations DoFs of the
task (x and y), with K = diag(0, 0,Kz,Kr,Kr,Kr);D =
diag(0, 0, Dz, Dr, Dr, Dr); Kz = 2500N/m, Dz =√
Kz Ns/m, Kr = 60 Nm/rad and Dr =√
Kr Nms/rad. All impedance values are defined with

respect to the robot base reference frame.
We also compensated for the joint viscous friction by

adding the contribution τw = cW q̇ to the joint torques.
W is a 7x7 diagonal matrix whose diagonal values were
derived from a linear regression between the torques and
joint velocities data acquired while manually moving the
robot in Zero-Torque control. The effect of τw is to add
a positive torque that increases with the joint velocity, in
order to compensate for joint viscous friction. In order to
avoid stability issues we limited this compensation to 50% of
the estimated torques, by multiplying the estimated friction
torques Wq̇ by the coefficient c = 0.5.

In order to manage the redundant DoF of the robot, an
additional torque projected into the null space was included
in the control law [18]:

τn = (I − JTJ†T )[kn(qdn − q)− dnq̇] , (3)

where qdn is the desired joint position vector and it is equal
to the initial configuration; q is the current joint position
vector; kn = 20 Nm/rad; dn =

√
kn Nms/rad; I is

a 7x7 identity matrix and J† = JT (JJT )−1. The null
space contribution allowed to avoid that the joint angles, not
involved in the task movements, drift when subjects perform
repetitive movements [19].

C. Reaching Task

Participants were asked to reach virtual targets by moving
a virtual cursor via the robotic handle. Robot and arm
movements were constrained in the horizontal (xy) plane.

In order to span approximately the whole workspace
reachable with the human arm, 15 positions centred with
the robot base reference frame, and evenly spaced 2.5 cm
apart, were identified on the horizontal (x) axis. For each
position, participants were asked to reach the corresponding
target (15 cm distant) by moving the handle forward (along
the y-axis) on a straight line, as accurately as possible.

Each trial had a 2 seconds timeout, after which the
target position disappeared and the new starting position
was displayed. Trials were separated by a 2.5 seconds break
in which the robot moved to the next starting position,
always maintaining the planar configuration and the same
end-effector orientation with respect to the robot base.

D. Simulation of Inertial contribution

Considering the robot control in (1), the main residual
element that needs to be compensated to move the robot
is its inertia in the 2D task space. Thus, we estimated the
inertial forces required to perform planar forward reaching

movements, with the two robot configurations. We simulated
different robot movements and postures along the trajec-
tory of interest, by means of the open-source 3D robotics
simulator Gazebo and the robotics middleware suite Robot
Operating System (ROS).

The same 15 positions considered in the task were evalu-
ated for the simulations. For each position, we estimated a
15 cm movement along the y-axis, performed in 1 second.

We simulated a human-like movement along the y-axis
through a minimum jerk trajectory, in which the position p
is calculated by a fifth-order polynomial as a function of
time. For each trajectory, we estimated the inertial ellipsoids
and inertial forces F at 5 intermediate points (8, 30, 50, 70
and 92 % of the total path) as follows:

F = Λp̈ , with Λ = J−TBJ−1 , (4)

where B is the 7x7 kinetic energy matrix in the joint
space, estimated through the robot model, and Λ is the
6x6 kinetic energy matrix in the operational space. The
generalized inertia ellipses on the horizontal plane were
evaluated considering Λ2, which represents the sub-matrix of
Λ composed of its first two rows and columns. The principal
axes of the ellipse are aligned with Λ2 eigenvectors λ(Λ2)
and their lengths are 1/

√
λ(Λ2) [16]. Similarly, only the x

and y contributions of the inertial forces were considered in
the analysis.

E. Experimental Protocol

Eight healthy participants (32.33 ± 6.57 years old, four
female) took part in the study, after having signed written
informed consent. Experimental procedures were approved
by the Ethics Committee of Università Campus Bio-Medico
di Roma (HUROB protocol) and carried out according to the
Declaration of Helsinki. Participants were all right-handed,
as assessed through the Oldfield test [20].

Each participant performed two experimental sessions, two
hours apart, each one with one of the robot configurations.
Four of them (two males and two females) started with
configuration G1 and the others with configuration G2.

Within each session, participants performed three task
repetitions, each composed of 30 trials (2 per position)
in random order. One repetition lasted roughly 2 minutes,
including intermediate breaks. The number of repetitions
allowed participants to familiarize with the experimental
setup, but most importantly to potentially adapt to the force
field provided by the robot.

F. Experimental Setup

A 7-DoFs Panda robot (by Franka Emika GmbH) was
employed and a custom ergonomic handle was 3D-printed
and fixed to the robot end-effector. Participants sat on a chair,
in front of the robotic manipulator, with their heads aligned
with the robot base, holding the handle with their right hand
(see figure 2). An adjustable strap was employed to hold
the participants’ elbow at the same height as their shoulder
and the robotic end-effector, and to compensate for the arm’s



weight. The strap was fixed to a slider, to compensate for
the gravity without exerting lateral forces on the arm.

The task was displayed on a vertical monitor, thus
forth/back movements of the handle were displayed as
up/down movements of the cursor.

The robot control was implemented in C++ language,
using Qt and Franka Control Interface libraries. It ran on
Ubuntu 16.04 with a real-time kernel. The reaching task was
implemented in C# language in the Unity 3D environment
and ran on Windows 10. The robot control exchanged data
with the task game through UDP communication. Data
relative to the robot status (position, orientation, etc.) were
employed for both task visualization and subsequent data
analysis.

G. Data Analysis

Handle trajectories were considered excluding the first and
last samples, which correspond either to unsteady starting
or to fine adjustment at the end. For each movement, we
evaluated the handpath error as the deviation from a straight
line connecting the starting position to the target. This index
was assessed both as the mean absolute error (MAE), and as
the relative deviation to the left or the right of the straight
path (signed mean error ME, with positive values indicating
deviations to the right and negative to the left) [21]. In
order to exclude the large variability given by the initial and
final adjustments, the indices and the mean trajectories were
assessed after having excluded the initial and final parts of
the movement (i.e. calculated from the 8% to the 92% of the
total path).

For each position, both trajectories and deviation indices
were averaged across participants. We evaluated the global
average deviation (MAE) over the three repetitions, but we
considered only the last repetition for the data analysis to
exclude the familiarization phase.

To better understand how the different starting positions
in the workspace affect the lateral deviations, we fitted the
mean error index (ME) across the 15 positions with three
alternative polynomial functions, of the first, second and
third-order respectively:

y(x) = p3x
3 + p2x

2 + p1x+ p0 , (5)

where either p3 or p3 and p2 are null in the case of
second and first-order polynomials, respectively. p0 value
corresponds to the average amount of deviation at x = 0, i.e.,
on the workspace middle line. Fitting results were evaluated
in terms of the goodness of fitting (adjusted R2) and p0 value.
Additionally, we measured the interaction forces exerted by
participants during the task, for each workspace position.

III. RESULTS

Fig. 3 shows the mean absolute handpath error for the
two configurations across the 15 positions of the workspace
and over the three repetitions. It is visible how the amount
of perturbation provided by the robot in the first repetition
decreased and settled already during the second repetition.
On average (mean value across all positions) the deviation
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Fig. 3. Mean Absolute Error (deviation from the straight line), for the
three repetitions (Rep 1,2,3) with the robot configurations G1 and G2,
respectively. MAE value is reported as the mean and standard deviation
across participants and trials, for each of the 15 positions of the workspace.
Each repetition is composed of 30 trials, two for each position. The dashed
line represents the average value across the workspace.
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trials per participant, for each of the 15 positions of the workspace. Dashed,
solid and dotted black lines represent respectively the first, second and third-
order polynomial fitting of the mean values. All these data refer to the last
repetition only.

decreased by 19% and 14% between the first and second
repetition, for configuration G1 and G2, respectively; it then
slightly oscillated (decreases by 9% in G1 and increased by
7% in G2) between the second and third repetition, reaching
in the last one the average values of 5.8 mm ± 2.1 mm for
G1 and 5.9 mm ± 1.9 mm for G2. Besides decreasing over
time, the deviation presented higher values at the boundaries
rather than in the workspace centre, particularly for G1.
Considering this result, for the other metrics we reported
only the results relative to the last repetition.

Figure 4 shows the signed deviations and their fitting for
the two configurations, considering first, second and third-
order polynomials. The best fittings for configuration G1
and G2 were respectively the third-order and second-order
polynomial, with adjusted R2 values equal to 0.96 and 0.85.
The magnitude of the deviation from the straight line in the
workspace centre, i.e., p0 value, for configuration G2 resulted
bigger (4.6 mm) than for configuration G1 (0.8 mm).

The main difference between the two setups is the shape
of the fitting, which represents the variation of the force
field across the workspace. Configuration G1 resulted best
fitted with a third-order polynomial: it showed almost null
deviations in the central positions and higher deviations
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Fig. 6. Interaction forces for configuration G1 and G2 expressed as absolute
value along x, absolute value along y and norm. Each value is represented
as mean and standard deviation for each workspace position. These data
refer to the last repetition only.

at the workspace boundaries. Interestingly, those boundary
deviations were symmetric with respect to the side, i.e., on
the right side people tended to deviate to the right and on
the left side they tended to deviate to the left. Conversely,
configuration G2 showed a less symmetric behaviour, which
led to negative deviations (toward the left) in most of
the workspace, except for the right boundary, where the
deviations oscillate around zero. The amount of deviation
is higher on the left boundary and decreases according to a
second-order trend heading to the right boundaries.

Figure 5 shows the results related to the simulations
and the experiments in terms of motion paths, interaction
forces and inertia across the workspace. At intermediate
points of each simulated straight path, we depicted the
generalized inertial ellipses and inertial forces estimated by
the simulations.

The first evident and predictable result is the symmetry

of the inertial contribution between the two mirrored con-
figurations G1 and G2. Ellipses are tilted in the same way
for a given robot configuration, i.e., counterclockwise with
respect to the vertical axis for G1 and clockwise for G2. As
expected, the ellipses’ orientation is configuration dependent,
being less tilted on the left boundary for G1 and on the right
one for G2.

For the experimental data, we showed the average tra-
jectories performed by participants for all 15 positions, and
the average interaction forces exerted by participants along
five intermediate points of each trajectory. On average, the
interaction forces were comparable with the simulated ones
in terms of direction, even though they presented slightly
higher magnitude at the beginning and lower at the end of
the trajectory, probably due to unmodelled friction contribu-
tion. In fact, differently from the simulations, in which the
interaction forces are symmetric with respect to the middle
point of the path, the experimental forces were greater in the
first half of the trajectory and lower in the second part.

Interaction forces are also reported more in detail in figure
6, in terms of average values of the norm, and mean absolute
values along the x and y axes separately, averaged across
participants for each workspace position. The norm of the
force resulted to be lower than 5N for both G1 and G2.
However, while the norm remains roughly constant across
the workspace, this is not true when we look at the separate
contributions along the x and y axes: the y contribution
resulted higher where the ellipsoids are vertically aligned
(left boundary for G1 and right boundary for G2), while
it decreased on the other side, where the x contribution
increased in the opposite way, accordingly to the ellipses’
orientation.

IV. DISCUSSION

In the present work, we assessed the suitability of a 7
DoFs robotic manipulator as a transparent haptic interface
for motor neuroscience studies. In particular, we tested two



robot planar configurations, named G1 and G2, which differ
in the location of the robot’s elbow (on the left or right
side of the workspace) while controlling the robot with
impedance control, compensating for the gravity, Coriolis
and centrifugal, and joint friction contributions.

First, we estimated the inertial ellipses and simulated iner-
tial forces across space for human-like reaching movements.
Then, we assessed the amount of perturbation provided by
the robot to the human motion in terms of the deviation from
the straight path and interaction forces.

After the first task repetition, the global amount of de-
viation decreased and settled for both configurations. This
means that the perturbation due to the presence of the robot
decreased after 2 minutes of interaction with the device,
leading to an average deviation lower than 6 mm. It is worth
noting that this value represents the average across all 15
positions spanning over the workspace but, especially for G1,
the perturbation showed lower values in the central positions
compared to the boundaries.

This trend is confirmed by the highest goodness of fitting
of the signed handpath error with a third-order polynomial,
for G1. Moreover, it showed concordance between path
deviations and workspace sides, deviating to the left in the
left workspace and to the right in the right one. This is an
interesting aspect worth discussing.

Indeed, by looking at the simulation and experimental
results, it is evident how the presence of the human arm,
with its own posture and inertia, affected the outcomes. The
estimated inertial forces are specular in the two configura-
tions and symmetrical with respect to the middle point of
the trajectory. However, probably due to the static friction
contribution, the interaction forces detected in the real sce-
nario were higher at the beginning of the movement and
lower at the end. The horizontal (x) force contribution in
G2 resulted to be more prominent in the left and the central
part of the workspace, where also a negative (to the left)
deviation was present. In this part of the workspace, both the
robotic and human arms are in their most extended posture.
On the contrary, in G1 the extension of the human arm
corresponds to the flexed configuration of the robotic arm
and vice versa. This is probably the reason why G1 led
to deviations symmetrical with respect to the centre of the
workspace.

As regards the deviation amount, a slightly reduced
workspace, which excludes one or two boundary points,
allows the planar configuration G1 to provide very little
perturbation in terms of trajectory deviations, so that it can be
considered a good configuration for experiments on human
subjects. This is not true in the G2 case where, even with a
workspace restriction, the robot affects the arm’s movement,
with residual deviations arranged in an asymmetrical way
with respect to the centre of the workspace.

The presented results show that a general-purpose collab-
orative manipulator could be used in motor neuroscience
studies to provide carefully controlled perturbations and
observe how the human motor system reacts to them, without
introducing unintended and noisy motor interference. This

could pave the way for future works that may extend the
investigation of human movements to more complex 3D
tasks.
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