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Abstract—It is known how humans exploit their muscle con-
traction to increase the accuracy of their movements, in order
to compensate for haptic disturbance or a combination of haptic
and visual noise, but it is unclear the individual contribution
of visual noise to muscle activity. Here, we aim to investigate
the activation of the arm muscle during a 3-DoFs tracking task
in presence of visual noise without any haptic feedback using
a robotic interface. We evaluated four different levels of visual
noise together with a no-noise condition. Tracking performance
was assessed in terms of position and orientation error. An index
of global muscle activation was obtained through data recorded
with six EMG sensors placed on the participant’s arm used in
the tracking task. We observed that muscle activation decreased
with the increment in visual noise for the first three levels. On
the other hand, the muscle activation for the fourth noise level
increased with respect to the third one, reaching values similar
to the no-noise condition. As in previous studies, we obtained a
linear relationship between tracking errors and visual noise with
bigger errors corresponding to higher standard deviation values
of the noise, while muscle co-contraction showed a more complex
behaviour.

Index Terms—Visual Noise, Muscle Co-Contraction, EMG
Sensors.

I. INTRODUCTION

To compensate for the variability affecting sensor informa-
tion -referred to as noise- during motor actions, humans rely on
both their prior knowledge and sensor information combining
them through a Bayesian integration [1].

Previous studies revealed how visual noise affects motor
task performance, showing that the higher the visual noise,
the higher the error [2]–[4]. In addition, in [2] the relationship
between the magnitude of the error and the noise (in terms of
standard deviation) was found to be linear.

In [5] and [6], the authors exploited visual noise on the
target to decrease the performance of one subject within
a dyad executing a common tracking task and exchanging
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haptic information through a robotic interface. They found
that the muscle co-contraction decreased in subjects with the
visual noise, while increased in those who received an noisy
haptic. These results pointed out the effect of the visual and
haptic information (and their amount of noise) on the control
of muscle co-activation. However, it is not entirely clear
how the visual noise individually contributes to arm muscle
contraction.

On the one hand, it is known that the central nervous system
increases the limb impedance in case of a haptic disturbance,
to achieve a higher task accuracy [7], [8]. On the other hand,
the effect of only visual noise on muscle co-activation of the
limb has not been investigated so far.

Here, we aim to study the influence of visual noise on mus-
cle co-contraction without any haptic feedback. In particular,
we evaluated the muscle activity during a three Degrees of
Freedom (DoFs) tracking task involving five different levels
of visual noise.

Four healthy participants were asked to perform a tracking
task using a robotic interface. Depending on the visual noise
level, the main target was replaced by a cloud of its replicas
normally distributed with specific values of standard deviation.

We evaluated global muscle activation using electromyo-
graphy (EMG) data, recorded from six muscles of the arm
used to execute the task. For the sake of completeness, we
analyzed also the tracking performance in terms of position
and orientation errors depending on the visual noise applied,
as did in the previous studies.

II. MATERIALS AND METHODS

A. Experimental setup

During the experiment, participants sat in front of a monitor
that provided visual information about the position of their
cursor and the target (see Fig. 1). They controlled the cursor by
moving a 7-DoFs robotic manipulator (Panda robot by Franka
Emika) through an ergonomic 3D-printed handle fixed on the



robot end-effector. The manipulator allowed only movements
along the directions involved in the task (i.e. vertical plane
movements plus rotation around the sagittal axis) being con-
trolled with zero impedance in these directions and with high
impedance along the other ones.

The coordinate systems of the robot and monitor are
aligned, as well as the task one. In addition, the translation
movements of the robot were scaled by a factor of two to
allow participants to reach the full workspace on the screen
with comfortable movements within arm range of motion.

The graphical interface for displaying the cursor and the
target was developed in the Unity 3D environment through
codes written in C# language. The software to control the
EMG sensors and record the muscular data was implemented
in C++ language. It exchanged information with Unity soft-
ware through UDP communication about the position and
orientation of the robot end-effector, displayed through the
cursor pose.

The code for controlling the robot was implemented in
C++ language using the Qt environment and Franka Control
Interface libraries. While the EMG and the Unity software ran
on Windows 10, the robot controller ran on Ubuntu 16.04 with
a real-time kernel.

Data from the robot, graphical interface and EMG were
recorded at 50 Hz, 100 Hz, and 1.1 kHz respectively.

Six EMG sensors (TrignoTM Wireless System, Delsys) were
employed to record the activity of Pectoralis Major, Posterior
Deltoid, Biceps Brachii, Lateral Head of Triceps Brachii,
Flexor Carpi Radialis, Extensor Carpi Radialis Longus (see
Fig. 2).

B. Tracking task and visual noise

To assess how humans alter their arm co-contraction accord-
ing to visual noise during movements, we asked participants
to execute the tracking task used in [2]. It involved movements
along the three dimensions indicated in Fig. 1: translation
along the horizontal axis x; ii) translation along the vertical
axis y; iii) rotation φ around the sagittal axis z.

Participants had to move their cursor through a robotic
interface in order to track the position (x(t) and y(t) expressed
in centimeters) and the orientation (ϕ(t) expressed in degrees)
of a target following a multi-sine trajectory, as in [9]:

x(t) = 3sin(1.8t) + 3.4sin(1.8t) + 2.5sin(1.82t) + 4.3sin(2.43t)− x(t∗);

y(t) = 3sin(1.1t) + 3.2sin(3.6t) + 3.8sin(2.5t) + 4.8sin(1.48t)− y(t∗);

φ(t) = 20sin(1.4t) + 12sin(2.5t) + 17.5sin(1.8t) + 8.1sin(2t)− φ(t∗);
(1)

where x, y and φ represent target’s position and angular
rotation at each time t, respectively. t = t0 + t∗, where
0 s <= t∗ <= 30 s and the value of t0 was randomly
selected in the interval [0, 10] s to avoid the memorization of
the target trajectory during the experiment. The initial value
of the coordinates (t = t0 in Eq. 1) was subtracted from the
trajectories to have the target starting with null coordinates at
the beginning of each trial.

The center of the workspace corresponded with the screen
one. The dimensions of the overall screen workspace are 26

Fig. 1. Experimental setup. The subject seat in front of the screen, which is
used to provide visual feedback about the target and the subject’s cursor. The
cursor is controlled through a 7-DoF robotic interface blocked in the directions
not involved in the task and moved by the subject through an ergonomic 3D-
printed handle fixed at the robot end-effector. Six EMG sensors are placed on
the subject’s arm and shoulder to evaluate the arm muscle contraction.
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N° Muscle Role

1 Pectoralis Major Shoulder Flexor

2 Posterior Deltoid Shoulder Extensor

3 Biceps Brachii Elbow Flexor

4 Lateral Head of Triceps
Brachii Elbow Extensor

5 Flexor Carpi Radialis Wrist Flexor

6 Extensor Carpi Longus Wrist Extensor

Fig. 2. Muscles recorded with the six EMG sensors. The activity of a flexor
and an extensor has been recorded for each arm joint (shoulder, elbow, wrist).

centimetres for both x and y, and 110 degrees for the rotation
φ.

The visual noise was applied displaying a cloud of ten
target replicas instead of the main target. The position and the
orientation of the replicas were normally distributed around the
desired pose, computed using Eq. 1. To obtain different visual
noise levels, the standard deviation of the normal distribution
was manipulated in order to test four levels of visual noise
together with the no-noise condition, in which the target is
displayed sharp.

Table I shows the value of the standard deviation employed
for each DoF in each noise level L. The computation of the
Gaussian visual noise as well as the visual feedback updating
was executed as described in [2]. For the sake of brevity,
hereafter we refer to visual noise also as noise.

To evaluate muscle arm co-contracion, the activity of six
muscles of the arm used during the task was recorded through
EMG sensors. For each shoulder, elbow and wrist joint, we



TABLE I
VALUE OF STANDARD DEVIATION OF THE GAUSSIAN VISUAL NOISE FOR

POSITION P AND ORIENTATION ϕ

L0 L1 L2 L3 L4

σp [cm] 0 1 2 3 4

σϕ [deg] 0 4 8 12 16

selected one flexor and one extensor muscle as reported in Fig.
2.

C. Experimental Protocol

Four healthy right-handed volunteers participated in the
experiments (aged 31 years ± 5.7 years, one female) after
signing a written informed consent. The experimental pro-
tocol was approved by the Ethics Committee of Università
Campus Bio-Medico di Roma (HUROB protocol) and carried
out according to the Declaration of Helsinki. To assess the
handedness each participant executed the Oldfield test [10] at
the beginning of the experimental session.

Initially, each participant executed a Familiarization phase
consisting of one trial per each noise condition randomly
presented, resulting in five total trials (four noise levels plus no
noise condition). After the Familiarization, they were required
to execute the Task composed of fifty total trials in which the
four noise levels and the no-noise condition were randomly
presented ten times each.

In both Task and Familiarization, trials lasted thirty seconds
each and were followed by a resting phase of ten seconds to
avoid the subjects’ fatigue.

D. Data Analysis

To evaluate the task performance we used data recorded
from the game (i.e. Unity software) to compute tracking
errors along all the task DoFs (i.e. x, y, ϕ) as well as the
euclidean distance in the xy plane. The root mean square of
all the metrics was computed in each trial, and then for each
participant, the mean values across trials with the same noise
level was evaluated.

The recorded raw EMG data were filtered with a cascade
of the following second-order Butterworth digital filters [11]:
(a) band-pass filter in the frequency range (20− 450) Hz; (b)
notch filter (fc = 50 Hz); (c) low-pass filter (fc = 6 Hz).

The average activity of each muscle Mi (i ∈ 1, ..., 6) in each
noisy trial was normalized using the average activity recorded
from that muscle in trials with no visual noise (EMGMi,L0)
using the following relation:

EMGMi,Lj
norm (Tk) =

EMGMi,Lj(Tk)

EMGMi,L0
, (2)

where EMGMi,Lj(Tk) is the averaged EMG data in the
kth trial of the level j for the muscle i, with j ∈ 1, ..., 4
and k ∈ 1, ..., 10. Then, the normalized values of each muscle
were averaged according to the visual noise level and finally,
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Fig. 3. Orientation Error. A) Violin plot describing the distribution of the
orientation error of all the subjects (sub1 - sub4) with respect to the noise
level. B) Orientation error of each participant (identified by colours) in each
noise level. The black line and shadow indicate respectively the linear fit and
the confidence bounds between the orientation tracking error and the visual
noise (standard deviation).

a global index was obtained as the average across all the
muscles.

The influence of the amount of visual noise on human
performance was evaluated through a one-way RM Anova.
We tested five levels (four visual noise conditions plus the
no-noise one) in case of tracking errors, and four levels (the
four visual noise conditions) for the muscle activation index.
Indeed, in the latter case, the no-noise level was not considered
since data were already normalized on that condition using Eq.
2. In addition, the values of muscle activation in each visual
noise level were compared to 1 using a one-sample t-test to
observe if the muscle contraction varied with respect to the
sharp visual feedback.

III. RESULTS

As found in [2] and [3] a linear positive trend between track-
ing error and visual noise (standard deviation) is noticeable
for both position and orientation errors (see Fig. 3 and Fig. 4)
with the indices of the goodness of linear fit (R2) respectively
equal to 0.62 and 0.57 (Fig. 3B and Fig. 4B). The regressions
were executed considering data of all the subjects since the
Chauvenet’s criterion did not show any outliers, even if the
performances of one subject (sub1) are lower with respect to
the other subjects.

Statistical analysis confirmed the main effect of visual noise
on tracking error (p < 0.001) in all the evaluated indices,
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Fig. 4. Position Error. A) Violin plot describing the distribution of the
position error of all the subjects (sub1 - sub4) with respect to the noise level.
B) Position error of each participant (identified by colours) in each noise
level. The black line and shadow indicate respectively the linear fit and the
confidence bounds between the orientation tracking error and the visual noise
(standard deviation).

with bigger errors corresponding to higher noise. Post-hoc
comparisons with Bonferroni correction -for a family of ten
comparisons- revealed significant differences among all the
noise levels except for the comparison between L1 and L2
for the position (p < 0.05 for all the significant comparisons).
Whereas for the orientation only L0 vs L4, L2 vs L3 and L2 vs
L4 resulted to be significantly different being all characterized
by p < 0.05. Table II shows the corrected p-values obtained
for all the combinations among the noise levels, for position
and orientation error, as well as for normalized EMG data.

As shown in Fig. 5A, the muscle activation decreased with
the increase of the visual noise, except for the highest level in
which it was on average higher than all other noise conditions.
Table III shows in detail the mean and the standard deviation
of the normalized muscle activation in the case of each noise
level.

Although the one-way Repeated Measure Anova indicated
a significant main effect (p = 0.021) of the noise level on
muscle activation, the post-hoc tests with Bonferroni correc-
tion did not reveal any significant differences (see the Muscle
Activation column in Table II).

At the same time, the one-sample t-test on the normalize
EMG data, to compare the variation of the co-contraction with
the value 1 (same co-contraction as the no-noise condition),
indicated that in the case of L2 and L3 the muscle activity is
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Fig. 5. Global muscle activation normalized by the mean value in no-noise
condition. A) Violin plot indicating the mean and the median value among the
subjects in each noise level. The highest median value is in correspondence
with L4; L2 and L3 are statistically lower than the no-noise condition. B)
Muscle activation trend among all the levels for each subject. All the subjects,
except for the third, have similar trends: the activation decrease until the third
level and increases in correspondence with L4. The third subject is the only
one in which the highest value is in correspondence with L3.

TABLE II
P-VALUES OF POTS-HOC CORRECTED WITH BONFERRONI, FOR POSITION,

ORIENTATION AND GLOBAL MUSCLE ACTIVATION.

Comparison Position Orientation Muscle Activity

L0 vs L1 0.041 0.072

L0 vs L2 0.045 0.062

L0 vs L3 0.029 0.042

L0 vs L4 0.030 0.069

L1 vs L2 0.080 0.040 0.12

L1 vs L3 0.035 0.017 0.75

L1 vs L4 0.036 0.093 1.0

L2 vs L3 0.011 0.060 1.0

L2 vs L4 0.021 0.018 0.14

L3 vs L4 0.038 0.033 0.74

lower than in condition L0 (p = 0.024 and p = 0.013 for L2
and L3, respectively). The increase of the muscle activity in
the last level can be found in all the participants except the
third one (Fig. 5B), whose muscle activity in L4 is comparable
to L2 and L3.



TABLE III
AVERAGE VALUE AND STANDARD DEVIATION OF THE GLOBAL MUSCLE

ACTIVATION FOR EACH LEVEL OF NOISE, NORMALIZED WITH THE
AVERAGE VALUES OF THE TRIALS WITHOUT NOISE.

Level Mean STD

L1 0.94 0.058

L2 0.89 0.066

L3 0.89 0.056

L4 0.96 0.090

IV. DISCUSSION AND CONCLUSIONS

Previous studies investigated the role of visual noise on
human performance ( [2]–[4]), the human strategy to control
limb muscle co-contraction in the case of haptic disturbances
only ( [7], [8]), and that one in the case of a combination of
haptic and visual noise in human-human experiments [5], [6].

In this study, we investigated how humans control muscle
activation only as a function of visual noise during a 3-DoFs
tracking task using a robotic interface.

We tested four different levels of visual noise, which were
randomly presented to participants together with the no-noise
condition.

We evaluated performance in terms of tracking error and
muscle activity averaging the indices across participants, ac-
cording to the visual noise level. Tracking performance indices
confirmed the results of [2], indicating a significant influence
of the visual noise on the tracking error for almost all the
levels comparison, with a linear relationship between the noise
standard deviation and the amount of error in both position and
orientation movements.

We found that the average value of the muscular activation
decreased with the increase of visual noise up to the third level,
while in the highest values of visual noise (L4), it is higher
than in the other levels and similar to the no-noise condition.
Such behaviour can be observed in all the participants except
one.

Although there is a significant influence of the noise level
on muscle activation, there is no significant difference between
levels, which can be due to the low sample size.

However, the trend of muscle activation among levels seems
clear and it could be explained by a different perception of the
visual noise according to its intensity. Indeed in the first three
levels, the amount of noise could be seen by the participants
as a reduced request of accuracy in performing the task, thus
letting participants to follow the cloud of targets with lower
accuracy with respect to a single sharp target. Conversely, the
last noise level is probably high enough to be perceived as an
actual visual disturbance.

Therefore, we suppose that in the case of levels L1-L3,
participants perceived the accuracy required in the task as
lower than level L0 and thus decreased their muscle arm co-
contraction. Whereas, in level L4 the perception of the visual
noise as a disturbance led them to increase their muscle co-

activation in order to increase their accuracy, like in the case of
force field disturbance ( [8]) and human-human collaborative
experiment ( [5], [6]).

In order to better assess from a statistical point of view
the effect of individual noise levels on muscle activity, future
works will require an increased sample size. In addition, a
further investigation of the effect of a high amount of visual
noise on muscle contraction can be executed by changing the
evaluation ranges of standard deviation. In this case, the focus
should be on the region in which we observed the inversion
of the trend and on highest values of noise with respect to the
considered one (e.g. starting from L3 up to values higher than
L4).

Finally, the modulation of muscle co-activation in the pres-
ence of visual noise can be assessed in the case of motor
learning, in order to understand if humans adjust and optimize
their limb rigidity according to the noise level, as observed in
the case of adaptation to force fields.
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